李群、李代數(shù)和表示論

出版時間:2007-10  出版社:世界圖書出版公司  作者:Brian C. Hall  頁數(shù):351  
Tag標簽:無  

內(nèi)容概要

This book provides an introduction to Lie groups, Lie algebras, and representation theory, aimed at graduate students in mathematics and physics.Although there are already several excellent books that cover many of the same topics, this book has two distinctive features that I hope will make it a useful addition to the literature. First, it treats Lie groups (not just Lie alge bras) in a way that minimizes the amount of manifold theory needed. Thus,I neither assume a prior course on differentiable manifolds nor provide a con-densed such course in the beginning chapters. Second, this book provides a gentle introduction to the machinery of semisimple groups and Lie algebras by treating the representation theory of SU(2) and SU(3) in detail before going to the general case. This allows the reader to see roots, weights, and the Weyl group "in action" in simple cases before confronting the general theory.    The standard books on Lie theory begin immediately with the general case:a smooth manifold that is also a group. The Lie algebra is then defined as the space of left-invariant vector fields and the exponential mapping is defined in terms of the flow along such vector fields. This approach is undoubtedly the right one in the long run, but it is rather abstract for a reader encountering such things for the first time. Furthermore, with this approach, one must either assume the reader is familiar with the theory of differentiable manifolds (which rules out a substantial part of one's audience) or one must spend considerable time at the beginning of the book explaining this theory (in which case, it takes a long time to get to Lie theory proper).

書籍目錄

Part I General Theory  Matrix Lie Groups  1.1  Definition of a Matrix Lie Group      1.1.1  Counterexa~ples  1.2  Examples of Matrix Lie Groups      1.2.1  The general linear groups GL(n;R) and GL(n;C)      1.2.2 The special linear groups SL(n; R) and SL(n; C)      1.2.3  The orthogonal and special orthogonal groups, O(n) and SO(n)    1.2.4  The unitary and special unitary groups, U(n) and SU(n)    1.2.5 The complex orthogonal groups, O(n; C) and SO(n; C)     1.2.6  The generalized orthogonal and Lorentz groups    1.2.7 The symplectic groups Sp(n; R), Sp(n;C), and $p(n)     1.2.8  The Heisenberg group H  .    1.2.9  The groups R, C*, S1,  and Rn    1.2.10 The Euclidean and Poincaxd groups E(n) and P(n; 1)  1.3  Compactness    1.3.1  Examples of compact groups    1.3.2  Examples of noncompa groups  1.4  Connectedness  1.5  Simple Connectedness    1.6  Homomorpliisms and Isomorphisms    1.6.1 Example: SU(2) and S0(3)   1.7 The Polar Decomposition for S[(n; R) and SL(n; C)   1.8  Lie Groups   1.9  Exercises2   Lie Algebras and the Exponential Mapping   2.1  The Matrix Exponential   2.2  Computing the Exponential of a Matrix     2.2.1  Case 1: X is diagonalizable     2.2.2  Case 2: X is nilpotent     2.2.3  Case 3: X arbitrary  2.3  The Matrix Logarithm  2.4  Further Properties of the Matrix Exponential  2.5  The Lie Algebra of a Matrix Lie Group    2.5.1  Physicists' Convention    2.5.2  The general linear groups    2.5.3  The special linear groups    2.5.4  The unitary groups    2.5.5  The orthogonal groups    2.5.6  The generalized orthogonal groups    2.5.7  The symplectic groups    2.5.8  The Heisenberg group    2.5.9  The Euclidean and Poincar6 groups  2.6  Properties of the Lie Algebra  2.7  The Exponential Mapping  2.8  Lie Algebras    2.8.1  Structure constants    2.8.2  Direct sums  2.9  The Complexification of a Real Lie Algebra  2.10 Exercises3  The Baker-Campbell-Hausdorff Formula  3.1  The Baker-Campbell-Hausdorff Formula for the Heisenberg Group  3.2  The General Baker-Campbell-Hausdorff Formula  3.3  The Derivative of the Exponential Mapping  3.4  Proof of the Baker-Campbell-Hausdorff Formula    3.5  The Series Form of the Baker-Campbell-Hausdorff Formula   3.6  Group Versus Lie Algebra Homomorphisms  3.7  Covering Groups  3.8  Subgroups and Subalgebras  3.9  Exercises4  Basic Representation Theory    4.1  Representations    4.2  Why Study Representations?  4.3  Examples of Representations    4.3.1  The standard representation    4.3.2  The trivial representation    4.3.3  The adjoint representation    4.3.4  Some representations of S(,1(2)      4.3.5  Two unitary representations of S0(3)    4.3.6  A unitary representation of the reals  ……Part II Semistmple TheoryReferencesIndex

圖書封面

圖書標簽Tags

評論、評分、閱讀與下載


    李群、李代數(shù)和表示論 PDF格式下載


用戶評論 (總計22條)

 
 

  •   Hall是表示論方向的大家幺
  •   和好書籍,有收獲的啊
  •   建議購買!
  •   這個是老師推薦用書,書很好。如果當當可以保證裝訂質(zhì)量就好了
  •   知識全面,幫助了解
  •   這本書很好,很經(jīng)典。比較適合初學(xué)者。
  •   挺好的,推薦一下!
  •   學(xué)習相關(guān)方向的數(shù)學(xué)系學(xué)生值得一看
  •   挺好,很清晰
  •   好書,但比較容易,初學(xué)合適
  •   都17天了.書還沒收到.怎么評價
  •   這本書是從矩陣李代數(shù)講起的,因此前提知識就是矩陣論的一些基本知識,很適合沒有系統(tǒng)學(xué)習過流形的看起。推薦給想要了解李群和李代數(shù)但是沒有太深背景的朋友閱讀。
  •   適合初學(xué)李群的人學(xué)習,有很多線性李群的例子。
  •   價格合理,送貨挺快,也有發(fā)票!贊一個!
  •   只看了開頭的一點兒,寫得簡單、明了,適合初學(xué)者。或許是非李群李代數(shù)專業(yè)的人作為了解性教材。GTM系列教材多是很經(jīng)典的。
  •   當時看到這個比較適合初學(xué)者就買了,結(jié)果發(fā)現(xiàn)是英文版的,還是慢慢啃吧
  •   買了不少Lie group方面的書,很多都寫得難懂!但這本書確實寫的深入淺出!所以對于初學(xué)者,我強烈推薦這本書!
  •   1、打開封面,接下來的一頁破了個洞2、有的頁面墨跡深,有的頁面墨跡淺3、隨便一翻,就發(fā)現(xiàn)第79頁和第300頁有不明記號總之,是一本盜版書
  •   非常適合沒有學(xué)過流形的同學(xué), 比較初等的介紹矩陣群的性質(zhì)
  •   真不知道能不能看得懂?
  •   The arefully choosed contents and exercises, suitble size to be hold in one's hands and the comfortable English writting, all these features make this book into a perfect one... 閱讀更多
  •   李群比較難學(xué),這本書算是較簡單的了。
 

250萬本中文圖書簡介、評論、評分,PDF格式免費下載。 第一圖書網(wǎng) 手機版

京ICP備13047387號-7