出版時間:2007-8 出版社:人民郵電 作者:Garrett Birkhoff,Saunders Mac Lane 頁數(shù):496
Tag標(biāo)簽:無
內(nèi)容概要
《近世代數(shù)概論(英文版)(第5版)》出自近世代數(shù)領(lǐng)域的兩位科學(xué)巨匠之手,是一本經(jīng)典的教材。全書共分為15章,內(nèi)容包括:整數(shù)、多項式、實數(shù)、復(fù)數(shù)、矩陣代數(shù)、線性群、行列式和標(biāo)準(zhǔn)型、布爾代數(shù)和格、超限算術(shù)、環(huán)和理想、代數(shù)數(shù)域和伽羅華理論等?! 督来鷶?shù)概論(英文版)(第5版)》曾幫助過幾代人理解近世代數(shù),至今仍是一本非常有價值的參考書和教材,適合數(shù)學(xué)專業(yè)及其他理工科專業(yè)高年級本科生和研究生使用。
作者簡介
作者:(美國)伯克霍夫(Birkhoff.G.) (美國)麥克萊恩(Mac Lane.S)Garett Birkhoff(1911-1996)已故世界著名數(shù)學(xué)家,生前曾任國際數(shù)學(xué)家大會組織委員會主席、美國數(shù)學(xué)會副主席,美國工業(yè)與應(yīng)用數(shù)學(xué)會主席、《大不列顛百科全書》編委,美國科學(xué)院院士,哈佛大學(xué)教授,1933年開創(chuàng)格論研究,使其成為數(shù)學(xué)的一個重要分文。
書籍目錄
Preface to the Fourth Edition1 The Integers1.1 Commutative Rings; Integral Domains1.2 Elementary Properties of Commutative Rings1.3 Ordered Domains1.4 Well-Ordering Principle1.5 Finite Induction; Laws of Exponents1.6 ivisibility1.7 The Euclidean Algorithm1.8 Fundamental Theorem of Arithmetic1.9 Congruences1.10 The Rings Zn1.11 Sets, Functions, and Relations1.12 Isomorphisms and Automorphisms2 Rational Numbers and Fields2.1 Definition of a Field2.2 Construction of the Rationals2.3 Simultaneous Linear Equations2.4 Ordered Fields2.5 Postulates for the Positive Integers2.6 Peano Postulates3 Polynomials3.1 Polynomial Forms3.2 Polynomial Functions3.3 Homomorphisms of Commutative Rings3.4 Polynomials in Several Variables3.5 The Division Algorithm3.6 Units and Associates3.7 Irreducible Polynomials3.8 Unique Factorization Theorem3.9 Other Domains with Unique Factorization3.10 Eisenstein's Irreducibility Criterion3.11 Partial Fractions4 Real Numbers4.1 Dilemma of Pythagoras4.2 Upper and Lower Bounds4.3 Postulates for Real Numbers4.4 Roots of Polynomial Equations4.5 Dedekind Cuts5 Complex Numbers5.1 Definition5.2 The Complex Plane5.3 Fundamental Theorem of Algebra5.4 Conjugate Numbers and Real Polynomials5.5 Quadratic and Cubic Equations5.6 Solution of Quartic by Radicals5.7 Equations of Stable Type6 Groups6.1 Symmetries of the Square6.2 Groups of Transformations6.3 Further Examples6.4 Abstract Groups6.5 Isomorphism6.6 Cyclic Groups6.7 Subgroups 1436.8 Lagrange's Theorem6.9 Permutation Groups6.10 Even and Odd Permutations6.11 Homomorphisms6.12 Automorphisms; Conjugate Elements6.13 Quotient Groups6.14 Equivalence and Congruence Relations7 Vectors and Vector Spaces7.1 Vectors in a Plane7.2 Generalizations7.3 Vector Spaces and Subspaces7.4 Linear Independence and Dimension7.5 Matrices and Row-equivalence7.6 Tests for Linear Dependence7.7 Vector Equations; Homogeneous Equations7.8 Bases and Coordinate Systems7.9 Inner Products7.10 Euclidean Vector Spaces7.11 Normal Orthogonal Bases7.12 Quotient-spaces7.13 Linear Functions and Dual Spaces8 The Algebra of Matrices8.1 Linear Transformations and Matrices8.2 Matrix Addition8.3 Matrix Multiplication8.4 Diagonal, Permutation, and Triangular Matrices8.5 Rectangular Matrices8.6 Inverses8.7 Rank and Nullity8.8 Elementary Matrices 2438.9 Equivalence and Canonical Form8.10 Bilinear Functions and Tensor Products8.11 Quaternions9 Linear Groups9.1 Change of Basis9.2 Similar Matrices and Eigenvectors9.3 The Full Linear and Affine Groups9.4 The Orthogonal and Euclidean Groups9.5 Invariants and Canonical Forms9.6 Linear and Bilinear Forms9.7 Quadratic Forms9.8 Quadratic Forms Under the Full Linear Group9.9 Real Quadratic Forms Under the Full Linear Group9.10 Quadratic Forms Under the Orthogonal Group9.11 Quadrics Under the Affine and Euclidean Groups9.12 Unitary and Hermitian Matrices9.13 Affine Geometry9.14 Projective Geometry10 Determinants and Canonical Forms10.1 Definition and Elementary Properties of Determinants10.2 Products of Determinants10.3 Determinants as Volumes10.4 The Characteristic Polynomial10.5 The Minimal Polynomial10.6 Cayley-Hamilton Theorem10.7 Invariant Subspaces and Reducibility10.8 First Decomposition Theorem10.9 Second Decomposition Theorem10.10 Rational and Jordan Canonical Forms11 Boolean Algebras and Lattices11.1 Basic Definition11.2 Laws: Analogy with Arithmetic11.3 Boolean Algebra11.4 Deduction of Other Basic Laws11.5 Canonical Forms of Boolean Polynomials11.6 Partial Orderings11.7 Lattices11.8 Representation by Sets12 Transfinite Arithmetic12.1 Numbers and Sets12.2 Countable Sets12.3 Other Cardinal Numbers12.4 Addition and Multiplication of Cardinals12.5 Exponentiation13 Rings and Ideals13.1 Rings13.2 Homomorphisms13.3 Quotient-rings13.4 Algebra of Ideals13.5 Polynomial Ideals13.6 Ideals in Linear Algebras13.7 The Characteristic of a Ring13.8 Characteristics of Fields14 Algebraic Number Fields14.1 Algebraic and Transcendental Extensions14.2 Elements Algebraic over a Field14.3 Adjunction of Roots14.4 Degrees and Finite Extensions14.5 Iterated Algebraic Extensions14.6 Algebraic Numbers14.7 Gaussian Integers14.8 Algebraic Integers14.9 Sums and Products of Integers14.10 Factorization of Quadratic Integers15 Galois Theory15.1 Root Fields for Equations15.2 Uniqueness Theorem15.3 Finite Fields15.4 The Galois Group15.5 Separable and Inseparable Polynomials15.6 Properties of the Galois Group15.7 Subgroups and Subfields15.8 Irreducible Cubic Equations15.9 Insolvability of Quintic EquationsBibliographyList of Special SymbolsIndex489
圖書封面
圖書標(biāo)簽Tags
無
評論、評分、閱讀與下載