出版時(shí)間:2010-6 出版社:電子工業(yè)出版社 作者:(美)夏普,(美)德維克斯,(美)維爾曼 著 頁(yè)數(shù):761
Tag標(biāo)簽:無(wú)
前言
本書(shū)是為商科學(xué)生而寫(xiě)的,它將回答一個(gè)簡(jiǎn)單的問(wèn)題:“怎樣才能做出更好的決策?”作為企業(yè)家和顧問(wèn),應(yīng)該知道為了在今天這樣的競(jìng)爭(zhēng)環(huán)境下生存和發(fā)展,統(tǒng)計(jì)學(xué)是至關(guān)重要的。作為教育工作者,我們看到了向商科學(xué)生講授統(tǒng)計(jì)學(xué)的方式與商業(yè)決策制定中統(tǒng)計(jì)學(xué)的使用方式之間的脫節(jié)。本書(shū)將試圖通過(guò)介紹統(tǒng)計(jì)方法來(lái)縮短理論與實(shí)踐之間的距離。所以對(duì)學(xué)生來(lái)說(shuō),統(tǒng)計(jì)方法既重要又有趣。根據(jù)數(shù)據(jù)做出一個(gè)商業(yè)決策有一個(gè)故事要講,統(tǒng)計(jì)學(xué)在其中所扮演的角色是幫助聽(tīng)清楚這個(gè)故事。像其他教材一樣,本書(shū)將講授如何計(jì)算一個(gè)特定的統(tǒng)計(jì)量或檢驗(yàn),并且強(qiáng)調(diào)定義和公式。但是,與其他教材不同的是,本書(shū)也將講解“為什么”,并堅(jiān)持在商業(yè)決策的背景下給出結(jié)果。學(xué)生們將會(huì)了解到,為了做出更好的商業(yè)決策,應(yīng)該如何進(jìn)行統(tǒng)計(jì)思考、如何有效地表達(dá)分析結(jié)果并將決策告知他人。在寫(xiě)作本書(shū)時(shí),我們知道當(dāng)今時(shí)代的統(tǒng)計(jì)學(xué)是用技術(shù)來(lái)實(shí)踐的。這種見(jiàn)解的結(jié)果是:從對(duì)方程形式(比計(jì)算形式更喜歡直覺(jué)形式)的選擇中得到的一切東西,都運(yùn)用到了對(duì)真實(shí)數(shù)據(jù)的廣泛使用中。但是更重要的是,對(duì)技術(shù)價(jià)值的理解,使本書(shū)將重點(diǎn)集中于講授統(tǒng)計(jì)思維而不是計(jì)算上。書(shū)中幾百個(gè)例子關(guān)注的不是“怎么找出答案”,而是“如何思考答案以及它如何有助于制定出一個(gè)更好的決策”。對(duì)統(tǒng)計(jì)思維的關(guān)注將書(shū)中的各章聯(lián)系起來(lái)。初級(jí)商務(wù)統(tǒng)計(jì)學(xué)課程包含大量的新術(shù)語(yǔ)、概念和方法,但是它們有一個(gè)核心部分:通過(guò)理解數(shù)據(jù)告訴如何更加了解這個(gè)世界,怎樣做出更好的決策。從這個(gè)角度來(lái)看,學(xué)生們能夠知道從數(shù)據(jù)中得出推斷的許多方式都是相同的核心概念的一些應(yīng)用。
內(nèi)容概要
統(tǒng)計(jì)學(xué)是一門(mén)工具性學(xué)科,在眾多的學(xué)科領(lǐng)域有著廣泛的應(yīng)用。本書(shū)將統(tǒng)計(jì)學(xué)的概念與方法應(yīng)用于商務(wù)領(lǐng)域,從應(yīng)用層面對(duì)統(tǒng)計(jì)學(xué)的基本方法進(jìn)行了系統(tǒng)的講解。全書(shū)包括探索和收集數(shù)據(jù)、理解數(shù)據(jù)和分布、探索變量間的關(guān)系以及為決策建立模型四部分內(nèi)容,共24章,將方法的講解與商務(wù)領(lǐng)域中的現(xiàn)實(shí)案例緊密結(jié)合起來(lái),讓讀者掌握如何利用統(tǒng)計(jì)方法解決商務(wù)中的實(shí)際問(wèn)題。本書(shū)還將統(tǒng)計(jì)軟件與統(tǒng)計(jì)方法的應(yīng)用結(jié)合起來(lái),詳細(xì)介紹各種統(tǒng)計(jì)方法在Excel、Minitab、JMP、SPSS和DataDesk等軟件中的操作實(shí)現(xiàn)步驟。 本書(shū)可作為大學(xué)本科生和研究生的教材,也可供從事工商管理和經(jīng)濟(jì)分析的人士參考。
作者簡(jiǎn)介
作者:(美國(guó))夏普(Norean Radke Sharpe) (美國(guó))德維克斯(Richard D.De Veaux) (美國(guó))維爾曼(Paul F.Velleman)
書(shū)籍目錄
Part I Exploring and Collecting Data Chapter 1 Statistics and Variation 1.1 So, What Is Statistics? 1.2 How Will This Book Help? Chapter 2 Data 9 2.1 What Are Data? 2.2 Variable Types 2.3 Where, How, and When Mini Case Study Project: Credit Card Bank Chapter 3 Surveys and Sampling 3.1 Three Ideas of Sampling 3.2 A Census—Does It Make Sense? 3.3 Populations and Parameters 3.4 Simple Random Sample (SRS) 3.5 Other Sample Designs 3.6 Defining the Population 3.7 The Valid Survey Mini Case Study Projects: Market Survey Research The GfK Roper Reports Worldwide Survey Chapter 4 Displaying and Describing Categorical Data 4.1 The Three Rules of Data Analysis 4.2 Frequency Tables 4.3 Charts 4.4 Contingency Tables Mini Case Study Project: KEEN Footwear Chapter 5 Randomness and Probability 85 5.1 Random Phenomena and Probability 5.2 The Nonexistent Law of Averages 5.3 Different Types of Probability 5.4 Probability Rules 5.5 Joint Probability and Contingency Tables 5.6 Conditional Probability 5.7 Constructing Contingency Tables Mini Case Study Project: Market Segmentation 103 Chapter 6 Displaying and Describing Quantitative Data 6.1 Displaying Distributions 6.2 Shape 6.3 Center 6.4 Spread of the Distribution 6.5 Shape, Center, and Spread—A Summary 6.6 Five-Number Summary and Boxplots 6.7 Comparing Groups 6.8 Identifying Outliers 6.9 Standardizing 6.10 Time Series Plots *6.11 Transforming Skewed Data Mini Case Study Projects: Hotel Occupancy Rates 143, Value and Growth Stock Returns 143Part II Understanding Data and Distributions 157 Chapter 7 Scatterplots, Association, and Correlation 159 7.1 Looking at Scatterplots 7.2 Assigning Roles to Variables in Scatterplots 7.3 Understanding Correlation *7.4 Straightening Scatterplots 7.5 Lurking Variables and Causation Mini Case Study Projects: *Fuel Efficiency 181, The U.S. Economy and Home Depot Stock Prices Chapter 8 Linear Regression 193 8.1 The Linear Model 8.2 Correlation and the Line 8.3 Regression to the Mean 8.4 Checking the Model 8.5 Learning More from the Residuals 8.6 Variation in the Model and R2 8.7 Reality Check: Is the Regression Reasonable? Mini Case Study Projects: Cost of Living 213, Mutual Funds Chapter 9 Sampling Distributions and the Normal Model 223 9.1 Modeling the Distribution of Sample Proportions 9.2 Simulations 9.3 The Normal Distribution 9.4 Practice with Normal Distribution Calculations 9.5 The Sampling Distribution for Proportions 9.6 Assumptions and Conditions 9.7 The Central Limit Theorem—The Fundamental Theorem of Statistics 9.8 The Sampling Distribution of the Mean 9.9 Sample Size—Diminishing Returns 9.10 How Sampling Distribution Models Work Mini Case Study Project: Real Estate Simulation 247 Chapter 10 Confidence Intervals for Proportions 255 10.1 A Confidence Interval 10.2 Margin of Error: Certainty vs. Precision 10.3 Critical Values 10.4 Assumptions and Conditions *10.5 A Confidence Interval for Small Samples 10.6 Choosing the Sample Size Mini Case Study Projects: Investment 272, Forecasting Demand 272 Chapter 11 Testing Hypotheses about Proportions 279 11.1 Hypotheses 11.2 A Trial as a Hypothesis Test 11.3 P-values 11.4 The Reasoning of Hypothesis Testing 11.5 Alternative Hypotheses 11.6 Alpha Levels and Significance 11.7 Critical Values 11.8 Confidence Intervals and Hypothesis Tests 11.9 Two Types of Errors *11.10 Power Mini Case Study Projects: Metal Production 305, Loyalty Program 305 Chapter 12 Confidence Intervals and Hypothesis Tests for Means 313 12.1 The Sampling Distribution for the Mean 12.2 A Confidence Interval for Means 12.3 Assumptions and Conditions 12.4 Cautions About Interpreting Confidence Intervals 12.5 One-Sample t-Test 12.6 Sample Size *12.7 Degrees of Freedom—Why n – 1? Mini Case Study Projects: Real Estate 333, Donor Profiles 333 Chapter 13 Comparing Two Means 343 13.1 Testing Differences Between Two Means 13.2 The Two-Sample t-Test 13.3 Assumptions and Conditions 13.4 A Confidence Interval for the Difference Between Two Means 13.5 The Pooled t-Test *13.6 Tukey’s Quick Test Mini Case Study Project: Real Estate 364 Chapter 14 Paired Samples and Blocks 375 14.1 Paired Data 14.2 Assumptions and Conditions 14.3 The Paired t-Test 14.4 How the Paired t-Test Works Mini Case Study Projects: A Taste Test (Data Collection and Analysis) 389, Consumer Spending Patterns (Data Analysis) 389 Chapter 15 Inference for Counts: Chi-Square Tests 401 15.1 Goodness-of-Fit Tests 15.2 Interpreting Chi-Square Values 15.3 Examining the Residuals 15.4 The Chi-Square Test of Homogeneity 15.5 Comparing Two Proportions 15.6 Chi-Square Test of Independence Mini Case Study Projects: Health Insurance 424, Loyalty Program 424Part III Exploring Relationships Among Variables 435 Chapter 16 Inference for Regression 437 16.1 The Population and the Sample 16.2 Assumptions and Conditions 16.3 The Standard Error of the Slope 16.4 A Test for the Regression Slope 16.5 A Hypothesis Test for Correlation 16.6 Standard Errors for Predicted Values 16.7 Using Confidence and Prediction Intervals Mini Case Study Projects: Frozen Pizza 461, Global Warming? 461 Chapter 17 Understanding Residuals 473 17.1 Examining Residuals for Groups 17.2 Extrapolation and Prediction 17.3 Unusual and Extraordinary Observations 17.4 Working with Summary Values 17.5 Autocorrelation 17.6 Linearity 17.7 Transforming (Re-expressing) Data 17.8 The Ladder of Powers Mini Case Study Projects: Gross Domestic Product 497, Energy Sources 498 Chapter 18 Multiple Regression 509 18.1 The Multiple Regression Model 18.2 Interpreting Multiple Regression Coefficients 18.3 Assumptions and Conditions for the Multiple Regression Model 18.4 Testing the Multiple Regression Model 18.5 Adjusted R2, and the F-statistic *18.6 The Logistic Regression Model Mini Case Study Project: Golf Success 536 Chapter 19 Building Multiple Regression Models 547 19.1 Indicator (or Dummy) Variables 19.2 Adjusting for Different Slopes—Interaction Terms 19.3 Multiple Regression Diagnostics 19.4 Building Regression Models 19.5 Collinearity 19.6 Quadratic Terms Mini Case Study Project: Paralyzed Veterans of America 577 Chapter 20 Time Series Analysis 589 20.1 What Is a Time Series? 20.2 Components of a Time Series 20.3 Smoothing Methods 20.4 Simple Moving Average Methods 20.5 Weighted Moving Averages 20.6 Exponential Smoothing Methods 20.7 Summarizing Forecast Error 20.8 Autoregressive Models 20.9 Random Walks 20.10 Multiple Regression-based Models 20.11 Additive and Multiplicative Models 20.12 Cyclical and Irregular Components 20.13 Forecasting with Regressionbased Models 20.14 Choosing a Time Series Forecasting Method 20.15 Interpreting Time Series Models: The Whole Foods Data Revisited Mini Case Study Projects: Intel Corporation 624, Tiffany & Co. 624Part IV Building Models for Decision Making 637 Chapter 21 Random Variables and Probability Models 639 21.1 Expected Value of a Random Variable 21.2 Standard Deviation of a Random Variable 21.3 Properties of Expected Values and Variances 21.4 Discrete Probability Models 21.5 Continuous Random Variables Mini Case Study Project: Investment Options 668 Chapter 22 Decision Making and Risk 675 22.1 Actions, States of Nature, and Outcomes 22.2 Payoff Tables and Decision Trees 22.3 Minimizing Loss and Maximizing Gain 22.4 The Expected Value of an Action 22.5 Expected Value with Perfect Information 22.6 Decisions Made with Sample Information 22.7 Estimating Variation 22.8 Sensitivity 22.9 Simulation 22.10 Probability Trees *22.11 Reversing the Conditioning: Bayes’s Rule 22.12 More Complex Decisions Mini Case Study Projects: Texaco-Pennzoil 693, Insurance Services, Revisited 694 Chapter 23 Design and Analysis of Experiments and Observational Studies 699 23.1 Observational Studies 23.2 Randomized, Comparative Experiments 23.3 The Four Principles of Experimental Design 23.4 Experimental Designs 23.5 Blinding and Placebos 23.6 Confounding and Lurking Variables 23.7 Analyzing a Design in One Factor—The Analysis of Variance 23.8 Assumptions and Conditions for ANOVA *23.9 Multiple Comparisons 23.10 ANOVA on Observational Data 23.11 Analysis of Multifactor Designs Mini Case Study Project: A Multifactor Experiment 736 Chapter 24 Introduction to Data Mining 747 24.1 Direct Marketing 24.2 The Data 24.3 The Goals of Data Mining 24.4 Data Mining Myths 24.5 Successful Data Mining 24.6 Data Mining Problems 24.7 Data Mining Algorithms 24.8 The Data Mining Process 24.9 SummaryAppendixes A Answers A-1 B Photo Acknowledgments A-37 C Tables and Selected Formulas A-41 D Index A-57
章節(jié)摘錄
插圖:Selecting a sample to represent the population fairly is more difficult than it sounds.Polls or surveys most often fail because t11e sample fails to represent part ofthe population.The wav the sample is drawn may overlook subgroups that are hardto find.For example,a telephone survey may get no responses from people withcaller ID and may favor other groups,such as the retired or tlle homebound,who would be more likely to be near their Dhones when the interviewer calls.Samplesthat over-or underemphasize some characteristics of the population are said to bebiased.the corresponding characteristics of the population it is trying to represent.Conclusions based on biased samples are inherently flawed.There is usually no way to fixbias after the sample is drawn and no way to salvage useful information from it. That are the basic techniques for making sure that a sample is representative?To make the sample as representative as possible,you might be tempted to hand-pick t}1e individuals included in the sample.But the best strategY is to do some-thing quite different:We should select individuals for the sample at random.
編輯推薦
《商務(wù)統(tǒng)計(jì)學(xué)(英文版)》特點(diǎn):1.強(qiáng)調(diào)統(tǒng)計(jì)知識(shí)和開(kāi)發(fā)統(tǒng)計(jì)思維;2.使用真實(shí)數(shù)據(jù);3.強(qiáng)調(diào)概念的理解而不僅僅是獲取知識(shí)的過(guò)程;4.培養(yǎng)主動(dòng)學(xué)習(xí);5.在理解概念和分析數(shù)據(jù)時(shí)使用軟件技術(shù);6.強(qiáng)調(diào)對(duì)統(tǒng)計(jì)結(jié)果的分析過(guò)程。
圖書(shū)封面
圖書(shū)標(biāo)簽Tags
無(wú)
評(píng)論、評(píng)分、閱讀與下載
商務(wù)統(tǒng)計(jì)學(xué) PDF格式下載
250萬(wàn)本中文圖書(shū)簡(jiǎn)介、評(píng)論、評(píng)分,PDF格式免費(fèi)下載。 第一圖書(shū)網(wǎng) 手機(jī)版