離散數(shù)學(xué)

出版時(shí)間:2006-9  出版社:清華大學(xué)  作者:羅瓦茨  頁數(shù):290  
Tag標(biāo)簽:無  

內(nèi)容概要

  本書包括組合、圖論及它們在優(yōu)化和編碼等領(lǐng)域的應(yīng)用。全書只有約300頁,但涵蓋了信息領(lǐng)域一些廣泛而有趣的應(yīng)用,及離散數(shù)學(xué)領(lǐng)域新穎而前沿的研究課題?! ”緯浅_m合計(jì)算機(jī)科學(xué)、信息與計(jì)算科學(xué)等專業(yè)作為“離散數(shù)學(xué)”引論課程的教材或參考書。

書籍目錄

Preface1  Let s Count!  1.1 A Party  1.2 Sets and the Like  1.3 The Nunmber of Subsets  1.4 The Approximate Number of Subsets  1.5 Sequences  1.6 Permutations  1.7 The Number of Ordered Subsets  1.8 The Number of Subsets of a Given Size2  Combinatorial Tools  2.1 Induction  2.2 Comparing and Estimationg numbers  2.3 Inclusion-Exclusion  2.4 Pigeonholes  2.5 The Twin Paradox and  the Good Old Logarithm3  Binomial Coefficients and Pascal s Triangle  3.1 The Binomial Theorem  3.2 Distributing Presents  3.3 Anagrams  3.4 Distributing Money  3.5 Pascal s Trianglc  3.6 Identities in pascal s Triangle  3.7 A Bird s -Eye View of Pascal s Triangle  3.8 All Eagle s -Eye View:Fine Details4  Fibonacci Numbers  4.1 Fibonacci s Exercise  4.2 Lots of Identities  4.3 A Formula for the Fibonacci Nunbers5  Combinatorial Probability  5.1 Events and Probabilities  5.2 Independent Repetition of an Experiment  5.3 The Law of Large Numbers  5.4 The Law of Small Numbers and t he Law of Very Large Nmmbers6  Integers,Divisors and Primes  6.1 Divisibility of Integers  6.2 Primes and Their History  6.3 Factorization into Primes  6.4 On the Set of primes  6.5 Fermat s Little Theorem  6.6 The Fuclidean lgorithm  6.7 Congruences  6.8 Strange Numbers  6.9 Nunber Theory and Combiatorics  6.10 How to Test Whether a Number is a Prime?7  Graphs  7.1 Even and Odd Dergrees  7.2 Paths Cycles and Connectivitry  7.3 Eulerian Walkd and Hamiltnian Cycles8  Trees   8.1 How to Define Trees  8.2 How to Grow Trees  8.3 HOw to Count Trees?  8.4 How to Store Trees  8.5 The Number of Unlabeled Trees9  Finding the Optimum  9.1 Finding the Best Tree  9.2 The Traveling Salesman Problem10  Matvchings in Graphs  10.1 A Dancing Problem  ……11  Combinatorics in Geometry12  Euler s Formula13  Coloring Maps and Graphs14  Finite Geometries,Codes,Latin Squares,and Other Pretty Creatures15  A Glimpse of COmplexity and Cryptography16  Answers to ExercisesIndex

圖書封面

圖書標(biāo)簽Tags

評(píng)論、評(píng)分、閱讀與下載


    離散數(shù)學(xué) PDF格式下載


用戶評(píng)論 (總計(jì)2條)

 
 

  •   很多頁面的反面印刷的很不清晰,清華出版社該狠抓下印刷質(zhì)量了。
  •     這本書和傳統(tǒng)的離散數(shù)學(xué)教材區(qū)別很大,完全不同于通常的“數(shù)理邏輯”——“近世代數(shù)”——“圖論”這樣的體系結(jié)構(gòu),而是從一個(gè)簡單的組合數(shù)學(xué)的問題入手,穿插有基礎(chǔ)數(shù)論以及較多的圖論。整本書并沒有很明晰的知識(shí)體系劃分,而是三個(gè)領(lǐng)域的方法互相交錯(cuò),且毫無生澀感,作者功力可見一斑(畢竟是拿過Wolf Prize的神牛?。?。
      
      另外這本書里對(duì)于很多知識(shí)點(diǎn)都列出了很漂亮的應(yīng)用,例如給樹編碼的Prufer Code,第一次看到時(shí)真的是令人擊節(jié)贊嘆。且個(gè)人認(rèn)為書中不少定理的證明是我所見過的最干凈的,有關(guān)圖匹配的那一章就是最好的例子。
      
      最后,這本書絕對(duì)是面向初學(xué)者的,基本不需要任何預(yù)備知識(shí),但也因此造成其覆蓋面有限,很多題材都是點(diǎn)到為止、個(gè)人認(rèn)為適合入門,可以很好地引起興趣,若要深入則還是得去看大部頭的《離散數(shù)學(xué)及其應(yīng)用》。
 

250萬本中文圖書簡介、評(píng)論、評(píng)分,PDF格式免費(fèi)下載。 第一圖書網(wǎng) 手機(jī)版

京ICP備13047387號(hào)-7