000004, tushu007.com
<Gt OO gdogds>>

gobooo

O00<<GtDoooogs>>
1300 ISBNUO O 0 9787564122607
1000 ISBNO O 11 7564122609

0 0dododo2010-6
gooooboooogooao
goooon

00 gd310

guooobobbogooooopbrbbbggoooobbbgooooon

00000000 http://www.tushu007.com

Page 1

0000 0O, tushu007.com
<Gt ooggdng>>

gd

AudienceWhile some familiarity with revision control systems will be good background material,a reader who is
not familiar with any other system will still be able to learn enoughabout basic Git operations to be productive in a
short while. More advanced readersshould be able to gain insight into some of Git's internal design and thus master
someof its more powerful techniques.The main intended audience for this book should be familiar and
comfortable with theUnix shell, basic shell commands, and general programming concepts.Assumed
FrameworkAlmost all examples and discussions in this book assume the reader has a Unix-likesystem with a
command-line interface. The author developed these examples on Debian and Ubuntu Linux environments. The
examples should work under other environments, such as Mac OS X or Solaris, but the reader can expect slight
variations.A few examples require root access on machines where system operations are needed.Naturally, in such
situations you should have a clear understanding of the responsibilities of root access. Book Layout and
OmissionsThis book is organized as a progressive series of topics, each designed to build uponconcepts introduced
earlier. The first 10 chapters focus on concepts and operationsthat pertain to one repository. They form the
foundation for more complex operationson multiple repositories covered in the final six chapters.If you already
have Git installed or have even used it briefly, you may not need theintroductory and installation information in the
first two chapters, nor even the quicktour presented in the third chapter.

Page 2

000004, tushu007.com
<Gt OO gdogds>>

goon

gitbooooooooooooboboo

OO00OOLinillusTorvaldsD O D OO O0OLInuxOODOOO0OO0O0OO0O0OO0O0OOODOODODOOOO
goGtoobobooooooooooboboboo

oGt oboboboooboobooooooobooboboboboboooooeitbonod
HEN

Page 3

000004, tushu007.com
<Gt OO gdogds>>

goon

OO00000000O0OJonLeeliger OO ODOODOOOODOODOODODODOU Linux™ U-Boot

oGitooooon
OO00OLnuxWorldDOOODOODODOOOGIitDO OO OLinux MagazineD DO OO0 O0O0OGitOD 0O OO

Page 4

0000 0O, tushu007.com
<Gt ooggdng>>

good

Prefacel.Introduction] Background[d The Birth of Git[] Precedents[] Time Line[] What's in a Name?2.Installing
Gitd Using Linux Binary Distributions] [0 Debian/Ubuntul] [0 Other Binary Distributions] Obtaining a Source
Releasel[] Building and Installing[] Installing Git on Windows[[Installing the Cygwin Git Package[J [I Installing
Standalone Git (msysGit)3.Getting Started[J The Git Command Lined Quick Introduction to Using Git[

[Creating an Initial Repository[] [0 Adding a File to Your Repository[] [0 Configuring the Commit Author[d

[0 Making Another Commit[] O Viewing Your CommitsC] [0 Viewing Commit Differencesd] 0 Removing and
Renaming Files in Your Repository[] [1 Making a Copy of Your Repository[d Configuration Files.[I

[0 Configuring an Alias] Inquiry4.Basic Git Concepts[] Basic Conceptsl] [I Repositories[] [1 Git Object Types[]
O Indexd O Content-Addressable Names[] [Git Tracks Content[] [1 Pathname Versus Content[] Object Store
Pictures] Git Concepts at Work[[J Inside the .git directory[] [1 Objects, Hashes, and Blobs[J [J Files and Trees
O O A Note on Git's Use of SHAL[I [J Tree HierarchiesJ [0 Commits[] [J Tags5.File Management and the Index
O It's All About the IndexO File Classifications in Gitl Using git add[J Some Notes on Using git commit[]

0 Using git commit --alllJ O Writing Commit Log Messagest Using git rm[] Using git mvJ A Note on Tracking
Renamest The .gitignore FilelJ A Detailed View of Git's Object Model and Files6.CommitsC] Atomic Changesets
O Identifying CommitsC] O Absolute Commit Names[] O refs and symrefs [Relative Commit Names

00 Commit History O Viewing Old CommitstJ O Commit GraphsO [Commit Rangest [J

[7.Branches8.Diffs9.Merges10.Altering Commitsl1.Remote Repositories12.Repository
Management13.Patches14.Hooks15.Combining Projects16.Using Git with Subversion Repositoriesindex

Page 5

0000 0O, tushu007.com
<Gt ooggdng>>

good

O O O It's important to see Git as something more than a version control system: Git is acontent tracking system.
This distinction, however subtle, guides much of the design ofGit and is perhaps the key reason Git can perform
internal data manipulations withrelative ease. Yet this is also perhaps one of the most difficult concepts for new
usersof Git to grasp, so some exposition is worthwhile.Git's content tracking is manifested in two critical ways that
differ fundamentally fromalmost all other* revision control systems.First, Git's object store is based on the hashed
computation of the contents of its objects,not on the file or directory names from the user's original file layout.
Thus, when Gitplaces a file into the object store, it does so based on the hash of the data and not onthe name of the
file. In fact, Git does not track file or directory names, which are asso-ciated with files in secondary ways. Again, Git
tracks content instead of files.If two separate files located in two different directories have exactly the same
content,Git stores a sole copy of that content as a blob within the object store. Git computesthe hash code of each
file according solely to its content, determines that the files havethe same SHAL values and thus the same content,
and places the blob object in theobject store indexed by that SHAL value. Both files in the project, regardless of
wherethey are located in the user’s directory structure, use that same object for content.If one of those files changes,
Git computes a new SHAL for it, determines that it is nowa different blob object, and adds the new blob to the
object store. The original blobremains in the object store for the unchanged file to use.Second, Git's internal
database efficiently stores every version of every file——not theirdifferences——as files go from one revision to the
next. Because Git uses the hash of afile's complete content as the name for that file, it must operate on each
complete copyof the file. It cannot base its work or its object store entries on only part of the file'scontent, nor on
the differences between two revisions of that file.

Page 6

000004, tushu007.com
<Gt OO gdogds>>

gobooooo

gobbobobooogooon
Ob0ob0ob00—->DonMartiDOOUOOOOOOOO

Page 7

000004, tushu007.com
<Gt OO gdogds>>

goon

gGitioooono@oo)yYOooohooooooobooooooooooaeitoocaitoooooad
00000000 0000ooobo0oooooooboooGitooGitoooooooooooao
00000000000 (rebasingd 00 (hook) DO ODDODODO(MOOHYOODOODDODOODOOODODO
O O Gitd subversion

Page 8

000004, tushu007.com
<Gt OO gdogds>>

goon

gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 9

