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AudienceWhile some familiarity with revision control systems will be good background material,a reader who is
not familiar with any other system will still be able to learn enoughabout basic Git operations to be productive in a
short while. More advanced readersshould be able to gain insight into some of Git's internal design and thus master
someof its more powerful techniques.The main intended audience for this book should be familiar and
comfortable with theUnix shell, basic shell commands, and general programming concepts.Assumed
FrameworkAlmost all examples and discussions in this book assume the reader has a Unix-likesystem with a
command-line interface. The author developed these examples on Debian and Ubuntu Linux environments. The
examples should work under other environments, such as Mac OS X or Solaris, but the reader can expect slight
variations.A few examples require root access on machines where system operations are needed.Naturally, in such
situations you should have a clear understanding of the responsibilities of root access. Book Layout and
OmissionsThis book is organized as a progressive series of topics, each designed to build uponconcepts introduced
earlier. The first 10 chapters focus on concepts and operationsthat pertain to one repository. They form the
foundation for more complex operationson multiple repositories covered in the final six chapters.If you already
have Git installed or have even used it briefly, you may not need theintroductory and installation information in the
first two chapters, nor even the quicktour presented in the third chapter.
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O O O It's important to see Git as something more than a version control system: Git is acontent tracking system.
This distinction, however subtle, guides much of the design ofGit and is perhaps the key reason Git can perform
internal data manipulations withrelative ease. Yet this is also perhaps one of the most difficult concepts for new
usersof Git to grasp, so some exposition is worthwhile.Git's content tracking is manifested in two critical ways that
differ fundamentally fromalmost all other* revision control systems.First, Git's object store is based on the hashed
computation of the contents of its objects,not on the file or directory names from the user's original file layout.
Thus, when Gitplaces a file into the object store, it does so based on the hash of the data and not onthe name of the
file. In fact, Git does not track file or directory names, which are asso-ciated with files in secondary ways. Again, Git
tracks content instead of files.If two separate files located in two different directories have exactly the same
content,Git stores a sole copy of that content as a blob within the object store. Git computesthe hash code of each
file according solely to its content, determines that the files havethe same SHAL values and thus the same content,
and places the blob object in theobject store indexed by that SHAL value. Both files in the project, regardless of
wherethey are located in the user’s directory structure, use that same object for content.If one of those files changes,
Git computes a new SHAL for it, determines that it is nowa different blob object, and adds the new blob to the
object store. The original blobremains in the object store for the unchanged file to use.Second, Git's internal
database efficiently stores every version of every file——not theirdifferences——as files go from one revision to the
next. Because Git uses the hash of afile's complete content as the name for that file, it must operate on each
complete copyof the file. It cannot base its work or its object store entries on only part of the file'scontent, nor on
the differences between two revisions of that file.
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