00004, tushu007.com
<<flex [1 bison>>

gobooo

000 <<flex O bison>>

1300 ISBNUO O 0 9787564119324
1000 ISBNO O 11 7564119322
0dodon2010-1
gooooboooogooao

O O O John Levine

00o271

guooobobbogooooopbrbbbggoooobbbgooooon

00000000 http://www.tushu007.com

Page 1

00000, tushu007.com
<<flex (1 bison>>

gd

Flex and bison are tools designed for writers of compilers and interpreters, althoughthey are also useful for many
applications that will interest noncompiler writers. Anyapplication that looks for patterns in its input or has an
input or command language isa good candidate for flex and bison. Furthermore, they allow for rapid
applicationprototyping, easy modification, and simple maintenance of programs. To stimulateyour imagination,
here are a few things people have used flex and bison, or their predecessors lex and yacc, to develop: The desktop
calculator bcThe tools egn and pic, typesetting preprocessors for mathematical equations and complex
picturesMany other "domain-specific languages" targeted for a particular application PCC, the Portable C
Compiler used with many Unix systemsFlex itselfA SQL database language translatorScope of This BookChapter 1,
Introducing Flex and Bison, gives an overview of how and why flex and bisonare used to create compilers and
interpreters and demonstrates some simple applica-tions including a calculator built in flex and bison. It also
introduces basic terms weuse throughout the book.Chapter 2, Using Flex, describes how to use flex. It develops flex
applications that countwords in files, handle multiple and nested input files, and compute statistics on
Cprograms.Chapter 3, Using Bison, gives a full example using flex and bison to develop a fullyfunctional desktop
calculator with variables, procedures, loops, and conditional expressions. It shows the use of abstract syntax trees
fASTs[] , powerful and easy-to-usedata structures for representing parsed input.Chapter 4, Parsing SQL, develops
a parser for the MySQL dialect of the SQL relationaldatabase language.

Page 2

00000, tushu007.com
<<flex [1 bison>>

goon

OflexO bison(D O O)OODOODODOODOODOOO0OOOLInNnuxOUnNXOODOOOOOODOODOO
DO000000000OflexdbisondOOOOOO

OflexObisonD O OOOOOOOOO ReilllyD OOOOIlex&yaccOd OO 0O
OO00000000000flxdbisond00000000UNXODOOOOOOOOO
OflexObisonD OO OO OLnuxOUnxOOODOOOOOODOODOOODODODOODODOOOOODOO
OO0000000000D0O0DO0D00D000000bO0DOO0DOO0oDooooDooDoooooon
OO00000000b0O0DbOOoobOOooOood

O0OflexOhisonD OOOOODDODOOOODOODOOOOOOO

0000000 DODO00ODOO00D0D0O00D000DDOOO (address syrltax crunching)- 0 O000O OO
OO00000000o00ooOOooOooo- bobobooooooooooooooo.- ooog
O0o00o0oOOo0obOo0booOooD.- DoboooboobooopoosQIboo- Dooooad
O0O0@oOO)Y Doood((exenDOOODOO@arsen0 OO0 D0DOO0JGLROODOOC++000O

Page 3

00004, tushu007.com

<<flex [1 bison>>

Oo0o0d
John Levine, Taughannock NetworksO 0 O 0 0 00200 0000000 0O 0O O lex & yaccd O O gmail
OO000O0 ReillypDdO

Page 4

00000, tushu007.com
<<flex (1 bison>>

good

Preface 1. Introducing Flex and Bison Lexical Analysis and Parsing Regular Expressions and Scanning Our First
Flex Program Programs in Plain Flex Putting Flex and Bison Together The Scanner as Coroutine Tokens and
Values Grammars and Parsing BNF Grammars Bison’ s Rule Input Language Compiling Flex and Bison Programs
Together Ambiguous Grammars: Not Quite Adding a Few More Rules Flex and Bison vs. Handwritten Scanners
and Parsers Exercises 2. Using Flex Regular Expressions Regular Expression Examples How Flex Handles
Ambiguous Patterns Context-Dependent Tokens File 1/0 in Flex Scanners Reading Several Files The 1/0 Structure
of a Flex Scanner Input to a Flex Scanner Flex Scanner Output Start States and Nested Input Files Symbol Tables
and a Concordance Generator Managing Symbol Tables Using a Symbol Table C Language Cross-Reference
Exercises 3. Using Bison How a Bison Parser Matches Its Input Shift/Reduce Parsing What Bison” s LALR(1)
Parser Cannot Parse A Bison Parser Abstract Syntax Trees An Improved Calculator That Creates ASTs Literal
Character Tokens Building the AST Calculator Shift/Reduce Conflicts and Operator Precedence When Not to Use
Precedence Rules An Advanced Calculator Advanced Calculator Parser Calculator Statement Syntax Calculator
Expression Syntax Top-Level Calculator Grammar Basic Parser Error Recovery The Advanced Calculator Lexer
Reserved Words Building and Interpreting ASTs Evaluating Functions in the Calculator User-Defined Functions
Using the Advanced Calculator Exercises 4. Parsing SQL A Quick Overview of SQL Relational Databases
Manipulating Relations Three Ways to Use SQL SQL to RPN The Lexer Scanning SQL Keywords Scanning
Numbers Scanning Operators and Punctuation Scanning Functions and Names Comments and Miscellany The
Parser The Top-Level Parsing Rules SQL Expressions Select Statements Delete Statement Insert and Replace
Statements Update Statement Create Database Create Table User Variables The Parser Routines The Makefile for
the SQL Parser Exercises 5. A Reference for Flex Specifications Structure of a Flex Specification Definition Section
Rules Section User Subroutines BEGIN C++ Scanners Context Sensitivity Left Context Right Context Definitions
(Substitutions) ECHO Input Management Stdio File Chaining Input Buffers Input from Strings File Nesting
input() YY_INPUT Flex Library Interactive and Batch Scanners Line Numbers and yylineno Literal Block Multiple
Lexers in One Program Combined Lexers Multiple Lexers Options When Building a Scanner Portability of Flex
Lexers Porting Generated C Lexers Reentrant Scanners Extra Data for Reentrant Scanners Access to Reentrant
Scanner Data Reentrant Scanners, Nested Files, and Multiple Scanners Using Reentrant Scanners with Bison
Regular Expression Syntax Metacharacters REJECT Returning Values from yylex() Start States unput() yyinput()
yyunput() yyleng yyless() yylex() and YY_DECL yymore() yyrestart() yy_scan_string and yy _scan_buffer
YY_USER_ACTION yywrap() 6. A Reference for Bison Specifications Structure of a Bison Grammar Symbols
Definition Section Rules Section User Subroutines Section Actions Embedded Actions Symbol Types for
Embedded Actions Ambiguity and Conflicts Types of Conflicts Shift/Reduce Conflicts Reduce/Reduce Conflicts
%expect GLR Parsers Bugs in Bison Programs Infinite Recursion Interchanging Precedence Embedded Actions
C++ Parsers %code Blocks End Marker Error Token and Error Recovery %destructor Inherited Attributes ($0)
Symbol Types for Inherited Attributes %initial-action Lexical Feedback Literal Block Literal Tokens Locations
%parse-param Portability of Bison Parsers Porting Bison Grammars Porting Generated C Parsers Libraries
Character Codes Precedence and Associativity Declarations Precedence Associativity Precedence Declarations
Using Precedence and Associativity to Resolve Conflicts Typical Uses of Precedence Recursive Rules Left and
Right Recursion Rules Special Characters %start Declaration Symbol Values Declaring Symbol Types Explicit
Symbol Types Tokens Token Numbers Token Values %type Declaration %union Declaration Variant and
Multiple Grammars Combined Parsers Multiple Parsers Using %name-prefix or the -p Flag Lexers for Multiple
Parsers Pure Parsers y.output Files Bison Library main() yyerror() YYABORT YYACCEPT YYBACKUP yyclearin
yydebug and YYDEBUG YYDEBUG yydebug yyerrok YYERROR yyerror() yyparse() YYRECOVERING() 7.
Ambiguities and Conflicts The Pointer Model and Conflicts Kinds of Conflicts Parser States Contents of
name.output Reduce/Reduce Conflicts Shift/Reduce Conflicts Review of Conflicts in name.output Common
Examples of Conflicts Expression Grammars IF/THEN/ELSE Nested List Grammar How Do You Fix the

Page 5

00000, tushu007.com
<<flex [1 bison>>

Conflict? IF/THEN/ELSE (Shift/Reduce) Loop Within a Loop (Shift/Reduce) Expression Precedence
(Shift/Reduce) Limited Lookahead (Shift/Reduce or Reduce/Reduce) Overlap of Alternatives (Reduce/Reduce)
Summary Exercises 8. Error Reporting and Recovery Error Reporting Locations Adding Locations to the Parser
Adding Locations to the Lexer More Sophisticated Locations with Filenames Error Recovery Bison Error Recovery
Freeing Discarded Symbols Error Recovery in Interactive Parsers Where to Put Error Tokens Compiler Error
Recovery Exercises 9. Advanced Flex and Bison Pure Scanners and Parsers Pure Scanners in Flex Pure Parsers in
Bison Using Pure Scanners and Parsers Together A Reentrant Calculator GLR Parsing GLR Version of the SQL
Parser C++ Parsers A C++ Calculator C++ Parser Naming A C++ Parser Interfacing a Scanner with a C++ Parser

Should You Write Your Parser in C++ ? Exercises Appendix: SQL Parser Grammar and Cross-Reference Glossary
Index

Page 6

00000, tushu007.com
<<flex (1 bison>>

good

00 O O A bison specification has the same three-part structure as a flex specification. [Flexcopied its structure
from the earlier lex, which copied its structure from yacc, the predecessor of bison.[] The first section, the
definition section, handles control informationfor the parser and generally sets up the execution environment in
which the parser willoperate. The second section contains the rules for the parser, and the third section isC code
copied verbatim into the generated C program.Bison creates the C program by plugging pieces into a standard
skeleton file. The rulesare compiled into arrays that represent the state machine that matches the input tokens.The
actions have the SN and @N values translated into C and then are put into a switchstatement within yyparse0 that
runs the appropriate action each time there's a reduction. Some bits of the skeleton have multiple versions from
which bison chooses depending on what options are in use; for example, if the parser uses the locations feature, it
includes code to handle location data.In this chapter we take the simple calculator example from Chapter 1 and
extend itsignificantly. First, we rewrite it to take advantage of some handy bison shortcuts andchange it to produce
a reusable data structure rather than computing the values on thefly. Later, we'll add more complex syntax for loops
and functions and show how toimplement them in a simple interpreter.One of the most powerful data structures
used in compilers is an abstract syntax tree(] ASTO . In Chapter 1 we saw a parse tree, a tree that has a node for
every rule used toparse the input string. In most real grammars, there are rules that exist to managegrouping but
that add no meaning to the program. In the calculator example, the rulesexp: term and term: factor exist only to tell
the parser the relative precedence of theoperators. An AST is basically a parse tree that omits the nodes for the
uninterestingrules.

Page 7

00004, tushu007.com
<<flex [1 bison>>

gobooooo

‘00000 OO0oOoOooobobOon
OO000000b0ob0ob0obobuobooboooooboobobUobOoDdlexdyaced

" O 0O ——Joel E. Denny bison] 00 O [

Page 8

00004, tushu007.com
<<flex [1 bison>>

goon

OflexUO bison(U O O)ODODOODOODOOODOOOOO

Page 9

00004, tushu007.com
<<flex [1 bison>>

goon
gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 10

