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When | was presented with the opportunity to revise Java Message Service, | jumped at the chance. The first
edition, published by O'Reilly in 2000, was a bestseller and without a doubt the definitive source for JMS and
messaging in general at that time.Writing the second edition was an exciting chance to breath new life into an
already great book and add new content that was relevant to how we use messaging today.What | failed to fully
realize when | took on the project was just how much messaging(or, more precisely, how we use messaging) has
changed in the past 10 years. New messaging techniques and technologies have been developed, including
messagedriven beans (as part of the EJB specification), the Spring messaging framework, Event Driven
Architecture, Service-Oriented Architecture, RESTful JIMS interfaces, and the Enterprise Service Bus (ESB), to
name a few. The somewhat minor book project that I originally planned quickly turned into a major book project.
My original intent was to preserve as much of the original content as possible in this new edition. However, based
on changes to the JMS specification since the first edition was written, as well as the development of new messaging
techniques and technologies,the original content quickly shrank. As a result, you will find that roughly 75% of this
second edition is new or revised content. The JMS specification was updated to version 1.1 a couple of years after
the printing of the first edition of this book. While not a major change to the JMS specification, the IMS 1.1
specification was nevertheless a significant step toward fixing some of the deficiencies with the original JIMS
specification. One of the biggest changes in the specification was the joining of the queue and topic APl under a
unified general APl,allowing queues and topics to share the same transactional unit of work. However, the
specification change alone was not the only factor that warranted a second edition of the book. As the Java platform
has matured, so has the way we think about messaging.From new messaging technologies and frameworks to
complex integration and throughput requirements, messaging has changed the way we think about and design
systems, particularly over the past 10 years. These factors, combined with the specification changes, are the reasons
for the second edition.
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(0 O O Event-Driven Architecture [ EDADO is an architecture style that is built on the premisethat the
orchestration of processes and events is dynamic and very complex, and there-fore not feasible to control or
implement through a central orchestration component.\When an action takes place in a system, that process sends
an event to the entire systemstating that an action took place [1 an event[] . That event may then kick off other
pro-cesses, which in turn may kick off additional processes, all decoupled from each other.Some good examples of
EDA include the insurance domain and the defined benefitsdomain. Both of these industry domains are driven by
events that happen in the system.For example, something as simple as changing your address can affect many
aspects ofthe insurance domain, including policies, quotes, and customer records. In this case,the driving event in
the insurance application is an address change. However, it is notthe responsibility of the address change module to
know everything that needs to happen as a result of that event. Therefore, the address change module sends an
eventmessage letting the system know that an address has changed. The quoting system willpick up that event and
adjust any outstanding quotes that may be present for thatcustomer. Simultaneously, the policy system will pick up
the change address event andadjust the rates and policies for that customer.Another example of EDA is within the
defined benefits domain. Getting married orchanging jobs triggers events in the system that qualify you for certain
changes to yourhealth and retirement benefits. Many of these systems use EDA to avoid using a large,complex, and
unmaintainable central processing engine to control all of the actionsassociated with a particular "qualifying
event."Messaging is the foundation for systems based on an Event-Driven Architecture. Eventsare typically
implemented as empty payload messages containing some informationabout the event in the header of the
message, although some pass the application dataas part of the event. Not surprisingly, most architectures based on
EDA leverage thepub/sub model as a means of broadcasting the events within a system.
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