0000 0O, tushu007.com
<<lJavall [] [J [J >>

gobooo

U00<<javall 0 0O 0O >>

1300 ISBNLI O [0 9787564119300
1000 ISBNUI U 1 7564119306
0o0o00oo2010-1
gobobooobboodaad
gooooboooodd

00O 0305

guooobobbogooooopbrbbbggoooobbbgooooon

00000000 http://www.tushu007.com

Page 1

0000 0O, tushu007.com
<<lavall [] [J [>>

gd

When | was presented with the opportunity to revise Java Message Service, | jumped at the chance. The first
edition, published by O'Reilly in 2000, was a bestseller and without a doubt the definitive source for JMS and
messaging in general at that time.Writing the second edition was an exciting chance to breath new life into an
already great book and add new content that was relevant to how we use messaging today.What | failed to fully
realize when | took on the project was just how much messaging(or, more precisely, how we use messaging) has
changed in the past 10 years. New messaging techniques and technologies have been developed, including
messagedriven beans (as part of the EJB specification), the Spring messaging framework, Event Driven
Architecture, Service-Oriented Architecture, RESTful JIMS interfaces, and the Enterprise Service Bus (ESB), to
name a few. The somewhat minor book project that I originally planned quickly turned into a major book project.
My original intent was to preserve as much of the original content as possible in this new edition. However, based
on changes to the JMS specification since the first edition was written, as well as the development of new messaging
techniques and technologies,the original content quickly shrank. As a result, you will find that roughly 75% of this
second edition is new or revised content. The JMS specification was updated to version 1.1 a couple of years after
the printing of the first edition of this book. While not a major change to the JMS specification, the IMS 1.1
specification was nevertheless a significant step toward fixing some of the deficiencies with the original JIMS
specification. One of the biggest changes in the specification was the joining of the queue and topic APl under a
unified general APl,allowing queues and topics to share the same transactional unit of work. However, the
specification change alone was not the only factor that warranted a second edition of the book. As the Java platform
has matured, so has the way we think about messaging.From new messaging technologies and frameworks to
complex integration and throughput requirements, messaging has changed the way we think about and design
systems, particularly over the past 10 years. These factors, combined with the specification changes, are the reasons
for the second edition.

Page 2

0000 0O, tushu007.com
<<lJavall [] [J [J >>

goon

Olavad OO 0OO0OOOODOOOOAPIDOODODOO0OO0O0OD0D—D0OO0OD00D0O0DO0O0DOODODOOO
OO0000000OO0bOO0ODOOooOg
OOooooMSODODODOODOODOODOO0O000000O0O0ODOO0ODOODOO0ooDooDOoooooood
00000000000 DOO0DOO0DoOooooDoon
OO00O00OMS1L10000000000000000000000Omessagingd 00000000
O O IBMO MQUO ProgressC] O O SonicMQO ActiveMQUO D O OO DO OOOOOOO0O

O00Jved0 0000000000 DODO0OO0OO0O0O000000DOO0ODOODOODOOooOO ooo
000000000000 000D000 DOO0O00D00O0O00Obeansd Enterprise JavaBeans(EJB)O O O O O
OO0 OO0OMSOOORESTRIDOOODOSpringD0 00000 OOOODOODOOOODOODODOO
ODO00000000D0Ooooooog

Oaval 00 O0D0DO0O0OO0O0OOO0DOOODOOOODOODOOOODOOd

Page 3

0000 0O, tushu007.com
<<lJavall [] [J [J >>

goon

OO0 (MarkRichards)D 0 OO0 000000000 O0OO00O0OO0OOOODOODOODODODOODOOOOOO
OO0000000OO0bOO0ODOOooOg

Richard Monson-Haefel(1 O’ Reilly O O [0 [J Enterprise JavaBeans O OJaval O OO0 00O OO O00O00O
OO000000000Oooaoo

David A. Chappelld Oracle O O 0 0 O SOAO OO OO O O O O Java Web Servicestl 0 O Javald 0O 0 O O
OO00000O0 ReilyDODOOOODOO

Page 4

0000 0O, tushu007.com
<<lavall [] [J [>>

good

ForewordPrefacel. Messaging Basics The Advantages of Messaging Heterogeneous Integration Reduce System
Bottlenecks Increase Scalability Increase End User Productivity Architecture Flexibility and Agility Enterprise
Messaging Centralized Architectures Decentralized Architectures Hybrid Architectures Centralized
Architecture As a Model Messaging Models Point-to-Point Publish-and-Subscribe JMS APl Point-to-Point
APl Publish-and-Subscribe APl Real-World Scenarios Service-Oriented Architecture Event-Driven
Architecture Heterogeneous Platform Integration Enterprise Application Integration Business-to-Business
Geographic Dispersion Information Broadcasting Building Dynamic Systems RPC Versus Asynchronous
Messaging Tightly Coupled RPC Enterprise Messaging2. Developing a Simple Example The Chat Application
Getting Started with the Chat Example Examining the Source Code Sessions and Threading3. Anatomy of a
JMS Message Headers Automatically Assigned Headers Developer-Assigned Headers Properties
Application-Specific Properties JMS-Defined Properties Provider-Specific Properties Message Types Message
TextMessage ObjectMessage BytesMessage StreamMessage MapMessage Read-Only Messages
Client-Acknowledged Messages Interoperability and Portability of Messages4. Point-to-Point Messaging
Point-to-Point Overview When to Use Point-to-Point Messaging The QBorrower and QLender Application
Configuring and Running the Application The QBorrower Class The QLender Class Message Correlation
Dynamic Versus Administered Queues Load Balancing Using Multiple Receivers Examining a Queueb.
Publish-and-Subscribe Messaging Publish-and-Subscribe Overview When to Use Publish-and-Subscribe
Messaging The TBorrower and TLender Application Configuring and Running the Application The TLender
Class The TBorrower Class Durable Versus Nondurable Subscribers Dynamic Versus Administered Subscribers
Unsubscribing Dynamic Durable Subscribers Temporary Topicsé. Message Filtering Message Selectors
Identifiers Literals Comparison Operators Arithmetic Operators Declaring a Message Selector Message
Selector Examples Managing Claims inan HMO Notification of Certain Bids on Inventory Priority Handling
Stock Trade Order Auditing Not Delivered Semantics Design Considerations7. Guaranteed Messaging and
Transactions Guaranteed Messaging Message Autonomy Store-and-Forward Messaging Message
Acknowledgments and Failure Conditions Message Acknowledgments AUTO_ACKNOWLEDGE
DUPS_ OK_ACKNOWLEDGE CLIENT_ACKNOWLEDGE Message Groups and Acknowledgment
Handling Redelivery of Messages in an Application Message Groups Example Message Grouping and Multiple
Receivers Transacted Messages Creating and Using a JMS Transaction Transacted Session Example
Distributed Transactions Lost Connections The ExceptionListener Example Dead Message Queues8. Java EE
and Message-Driven Beans Java EE Overview Enterprise JavaBeans Enterprise JavaBeans 3.0 (EJB3) Overview
Simplified Bean Development Dependency Injection Simplified Callback Methods Programmatic Defaults
Interceptors Java Persistence APl JMS Resources in Java EE The JNDI Environment Naming Context (ENC)
Message-Driven Beans Concurrent Processing and Scalability Defining Message-Driven Beans Message-Driven
Bean Use Cases Message Facade Transformation and Routing9. Spring and JMS Spring Messaging Architecture
JmsTemplate Overview Send Methods convertAndSend Methods receive and receiveSelected Methods
receiveAndConvert Methods Connection Factories and JMS Destinations Using JNDI Using Native Classes
Sending Messages Using the send Method Using the convertAndSend Method Using a Nondefault IMS
Destination Receiving Messages Synchronously Message-Driven POJOs The Spring Message Listener Container
MDP Option 1: Using the MessageListener Interface MDP Option 2: Using the SessionAwareMessageListener
Interface MDP Option 3: Using the MessageListenerAdapter Message Conversion Limitations The Spring JIMS
Namespace [jms:listener-container] Element Properties [jms:listener] Element Properties10. Deployment
Considerations Performance, Scalability, and Reliability Determining Message Throughput Requirements
Testing the Real-World Scenario To Multicast or Not to Multicast TCP/IP UDP [P Multicast Messaging
Over IP Multicast The Bottom Line Security Authentication Authorization Secure Communication
Firewallsand HTTP Tunneling Connecting to the Outside World Bridging to Other Messaging Systems11.

Page 5

0000 0O, tushu007.com
<<lJavall [] [J [J >>

Messaging Design Considerations Internal Versus External Destination Internal Destination Topology External
Destination Topology Request/Reply Messaging Design Messaging Design Anti-Patterns Single-Purpose Queue
Message Priority Overuse Message Header MisuseA. The Java Message Service APIB. Message HeadersC.

Message PropertiesD. Installing and Configuring ActiveMQIndex

Page 6

0000 0O, tushu007.com
<<lavall [] [J [>>

good

(0 O O Event-Driven Architecture [EDADO is an architecture style that is built on the premisethat the
orchestration of processes and events is dynamic and very complex, and there-fore not feasible to control or
implement through a central orchestration component.\When an action takes place in a system, that process sends
an event to the entire systemstating that an action took place [1 an event[] . That event may then kick off other
pro-cesses, which in turn may kick off additional processes, all decoupled from each other.Some good examples of
EDA include the insurance domain and the defined benefitsdomain. Both of these industry domains are driven by
events that happen in the system.For example, something as simple as changing your address can affect many
aspects ofthe insurance domain, including policies, quotes, and customer records. In this case,the driving event in
the insurance application is an address change. However, it is notthe responsibility of the address change module to
know everything that needs to happen as a result of that event. Therefore, the address change module sends an
eventmessage letting the system know that an address has changed. The quoting system willpick up that event and
adjust any outstanding quotes that may be present for thatcustomer. Simultaneously, the policy system will pick up
the change address event andadjust the rates and policies for that customer.Another example of EDA is within the
defined benefits domain. Getting married orchanging jobs triggers events in the system that qualify you for certain
changes to yourhealth and retirement benefits. Many of these systems use EDA to avoid using a large,complex, and
unmaintainable central processing engine to control all of the actionsassociated with a particular "qualifying
event."Messaging is the foundation for systems based on an Event-Driven Architecture. Eventsare typically
implemented as empty payload messages containing some informationabout the event in the header of the
message, although some pass the application dataas part of the event. Not surprisingly, most architectures based on
EDA leverage thepub/sub model as a means of broadcasting the events within a system.

Page 7

0000 0O, tushu007.com
<<lJavall [] [J [J >>

gobooooo

“00000D0Wva0 000000D00DO0DO000D00000MSAPIDODOODOODOODOODOO
O00000000000O0OEnterprisedavall 0 000 O
" OO ——TimBerglundJ AugustC] O O 0O 0O 00O

Page 8

0000 0O, tushu007.com
<<lJavall [] [J [J >>

goon

Olaval DO O@20- DOO)YWooooooooooo

Page 9

0000 0O, tushu007.com
<<lJavall [] [J [J >>

goon
gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 10

