出版時間:2012-1 出版社:哈爾濱工業(yè)大學出版社 作者:鄒鴻生 頁數(shù):237 字數(shù):397000
內容概要
鄒鴻生、岳洪浩主編的《智能結構裝置設計及結構電子系統(tǒng)》系統(tǒng)地介紹了智能結構、裝置和結構電子系統(tǒng)設計的基礎理論和技術領域的應用特點和設計方法。《智能結構裝置設計及結構電子系統(tǒng)》可作為高年級本科生及研究生的教材或學習參考書,也可作為相關領域研究人員的參考書。
書籍目錄
CHAPTER 1 INTRODUCTION TO SMART MATERIALS
1.1 PIEZOELECTRIC MATERIALS
1.2 SHAPE MEMORY MATERIALS
1.3 ELECTROSTRICTIVE MATERIALS
1.4 MAGNETOSTRICTIVE MATERIALS
1.5 ELECTRO-AND MAGNETO-RHEOLOGICAL FLUIDS
1.6 POLYELECTROLYTE GELS
1.7 PYROELECTRIC MATERIALS
1.8 OPTO-ELECTROMAGNETO MATERIALS
1.8.1 Photostrictive Materials
1.8.2 Photoferroelectric
Materials
1.8.3 Magneto-optical
Materials
1.9 SUMMARY
REFERENCES
CHAPTER 2 PIEZOELECTRIC MATERIALS AND DEVICES
2.1 PIEZOELECTRIC CONTINUA
2.1.1 Distributed Se ing and
Vibration Controls
2.1.2 Remarks
2.2 MULTIPURPOSE SENSORS
2.2.1 A Multipurpose
TactileAcceleration Se or System
2.2.2 Piezoelectricity in a Thick
Polymeric PVDF Flat
2.2.3 Tactile Respo e of Polymeric
PVDF
2.2.4 Design of Polymeric PVDF
Tactile Se o
2.2.5 Modeling of the Polymeric
Piezoelectric PVDF Se or
2.2.6 Damping Estimation
2.2.7 Experimentation
2.2.8 Results and Disscusio
2.2.9 Summary
2.3 HIGH-PRECISION MICRO-ACTUATION
2.3.1 A Piezoelectric Bimorph
Micro-displacement Actuator
2.3.2 Design Concept
2.3.3 Piezoelectric Bimorph
Theory
2.3.4 Finite Element
Development
2.3.5 Laboratory Experiments
2.3.6 Results and Discussio
2.3.7 Summary
2.4 DUAL-PURPOSE MICRO-ISOLATOREXCITER
2.4.1 Theoretical Formulation
2.4.2 Piezoelectric Exciter
2.4.3 Active Vibration
Isolation
2.5 EXPERIMENTAL VALIDATION--PROTOTYPE
MODEL
2.5.1 Piezoelectric Exciter
2.5.2 Results and Discussio
2.5.3 Summary
REFERENCES
APPENDIX: EXPERIMENTAL AND THEORETICAL DATA
CHAPTER 3 SHAPE MEMORY MATERIALS AND DEVICES
3.1 BACKGROUND AND FUNDAMENTAL CONCEFFS
3.1.1 Characteristics of Shape
Memory Materials
3.1.2 Crystal Tra formation
3.1.3 Shape Memory Effect
3.1.4 Detailed
Electro-thermo-elastic Behavior
3.2 DEVICES USING SHAPE MEMORY ALLOYS
3.2.1 Automotive
Applicatio
3.2.2 Aerospace and
Aviation
3.2.3 Mechanical Devices
3.2.4 Medical Applicatio
3.2.5 Bioengineering
3.2.6 Common Household
3.2.7 Robotics
3.2.8 Electronics
3.2.9 Co umer Products
3.2.10 Developing Application
Guidelines
3.2.11 Limitatio of
SMA's
3.3 NEW APPLICATIONS
3.3.1 Shape Memory Alloys in
"Fun" Applicatio
3.3.2 Future Applieatio
3.3.3 Summary
REFERENCES
CHAPTER 4 ELECTROSTRICTIVE MATERIALS AND DEVICES
4.1 ELECTROSTR1CTION OF MATERIAL
4.2 COMPARISON BETWEEN ELECTROSTRICS AND
PIEZOELECTRICS
4.3 MANUFACTURING TECHNIQUE
4.4 APPLICATIONS OF ELECTROSTRICTIVE
MATERIALS
4.4.1 Actuato
4.4.2 Ultrasonic Applicatio
4.4.3 Capacito
4.4.4 Discussio
4.4.5 New Horizo
4.5 SUMMARY
REFERENCES
CHAPTER 5 MAGNETOSTRICTIVE MATERIALS AND DEVICES
5.1 MAGNETOSTRICTIVE PROPERTIES
5.2 MAGNETOSTRICTIVE DEVICES11l
5.2.1 Magnetostrictive Core Line
Hydrophone
5.2.2 Rare Earth Flexte ional Tra
ducer
5.2.3 Magnetostrictive Alloys for
Hydraulic Valve Control
5.2.4 Magnetostrictive Linear
Displacement Tra ducer
5.2.5 Spherical Membrane
Omnidirectional Loudspeaker
5.2.6 Self-biased Modular
Magnetostrictive Driver and Tra ducer
5.2.7 Magnetostrictive Roller Drive
Motor
5.2.8 Low Frequency Sound Tra
ducer
5.2.9 Giant Magnetostrictive Alloy
(GMA)
5.2.10 Temposonics-II
Magnetostrictive Se or
5.2.11 Magnetostrictive Clamp
5.2.12 Magnetostrictive Tra ducer
for Logging Tool
5.3 APPLICATIONS
5.3.1 Actuato
5.3.2 Magnetostrictive Linear
Displacement Tra ducer
5.3.3 High Pressure Pump
5.3.4 Magnetostrictive Shaker
5.3.5 Antivibration Systems
5.3.6 Linear Moto
5.3.7 Underwater Communication
Equipment
5.3.8 Liquid Level Se or
5.3.9 Rotational Vibration Se
or
5.3.10 Laves Phase Se or
5.3.11 Human Spinal Monitoring Se
or
5.3.12 Human Body Se or
5.4 SUMMARY
REFERENCES
CHAPTER 6 ER AND MR FLUIDS WITH DEVICES
6.1 PROPERTIES OF ER FLUID
6.2 APPLICATIONS OF ER FLUID
6.2.1 Shock Absorbe
6.2.2 Car Suspe ion Systems
6.2.3 Engine Mounts
6.2.4 Clutches
6.2.5 Monotube Dampe
6.2.6 Artificial Limbs
6.2.7 Possible Future Uses
6.2.8 Summary
6.3 PROPERTIES OF MAGNETORHEOLOGICAL FLUID
6.4 APPLICATIONS OF MR FLUID
6.4.1 Shock Absorbe
6.4.2 Dampe and Engine
Mounts
6.4.3 Brake System
6.4.4 Clutches and Couplings
6.4.5 Valves and Compression
Seals
6.4.6 Moto and Pneumohydraulic
Drives
6.4.7 Heat Tra fer Control
6.5 DISCUSSIONS AND SUMMARY
REFERENCES
CHAPTER 7 POLYMERIC GELS AND DEVICES
7.1 CHARACTERISTICS OF POLYMERIC GELS
7.2 APPLICATIONS
7.2.1 Fiber Bundles for Artificial
Muscles
7.2.2 Dimethylformamide and
Dimethylsulphoxide Polymer Films
7.2.3 Interpolyelectrolyte Complexes
(IPEC)
7.2.4 Ionic Polymeric Drug Delivery
System
7.2.5 Artificial Cornea
7.2.6 Synthetic Scleral
Reinforcement Materials for Surgical Use
7.2.7 Biomedical Polyme
7.2.8 Molecular Biose or
7.2.9 Polymeric Membrane
7.2.10 Polymer Blends
7.2.11 Synthetic Polymeric
Gels
7.2.12 Osmosis Polymeric
Membrane
7.2.13 ETFE (Polyethylene
Tetrafluoroethylene) Microporous Polymeric Membrane
7.2.14 Integrated Force Arrays
(IFA)
7.2.15 Polypyrrole,
Poly-N-methylpyrrole, Ply-5-carboxyindole and Polyaniline
7.2.16 Material : Polyaniline Film,
Polyaniline-polyarbonate (PAn-PC) Film
7.2.17 Poly(vinyl
alcohol)-poly(sodium acrylate) Composite Gel (PVA-PAA Gel)
7.3 DISCUSSIONS AND SUMMARY
REFERENCES
CHAPTER 8 PYROELECTRIC MATERIALS AND DEVICES
8.1 PYROELECTRICITY AND FUNDMENTAL THEORY
8.1.1 Pyroelectrieity
8.1.2 Theory
8.2 OPERATIONAL ASPECTS OF PYROELECTRICS
8.2.1 Materials
8.2.2 Infrared Ear Thermometer
8.2.3 Optical Wavegnides
8.2.4 Mieroehannel Anemometer
8.2.5 Determination of Directional
Emissivity of Opaque Materials (300 - 600K)
8.2.6 Security
8.3 PYROELECTRIC APPLICATIONS
8.3.1 Se o
8.3.2 Detecto
8.4 FUTURE APPLICATIONS OF PYROEI,ECTRIC
MATERIALS
8.4.1 Biomedical
8.4.2 Military
8.4.3 Manufacturing
8.5 SUMMARY
REFERENCES
CHAPTER 9 PRECISION SENSOR SYSTEMS
9.1 DISPLACEMENT TRANSDUCERS
9.1.1 Potentiometric and Strain Gage
Position Tra duce
9.1.2 Strain Gage Displacement Tra
duce
9.1.3 Linear Variable Differential
Tra former
9.1.4 Inductive Proximity Probe
Displacement Measurement Systems
9.2 VELOCITY TRANSDUCERS AND SYSTEMS
9.2.1 Linear Velocity Tra duce
9.2.2 Rotary Velocity Tra
ducer
9.3 ACCELERATION TRANSDUCERS AND SYSTEMS
9.3.1 Strain Gage Aceeleromete
9.3.2 Piezoelectric
Acceleromete
9.3.3 Charge Amplifier Signal
Conditioning
9.3.4 Voltage Amplifier Signal
Conditioning
9.4 FORCE AND TORQUE TRANSDUCERS
9.4.1 Strain Gage Load Cells
9.4.2 Column Member Load Cell
9.4.3 Cantilever Beam Load
Cell
9.4.4 Ring Member Strain Gage Load
Cell
9.5 TORQUE MEASUREMENT TRANSDUCERS
9.6 PRESSURE MEASUREMENT SYSTEMS
9.6.1 Strain Gage Tra duce
9.6.2 Piezoelectric Pressure Tra
duce
9.6.3 Effect of Tra mission Lines on
Measurement of Pressure
9.6.4 Short Tra mission Lines
9.6.5 Long Tra mission Lines
APPENDICES
APX. 1 DEFINITIONS
APX. 2 LINEAR PIEZOELECTRICITY RELATIONS
APX. 3 ELASTIC, PIEZOELECTRIC AND DIELECTRIC
RELATIONS
章節(jié)摘錄
版權頁: 插圖: The concepts of smart,intelligent,and adaptive materials and structures originated in the mid-1980s in an attempt to describe the newly emerging research area of integrating electro-activefunctional materials into large-scale structures as in-situ sensors and actuators.Previously.electroactive materials had only been used in small and micro-scale transducers and precision mechatronic(mechanical+electronic)control systems.The general perception of smart,intelligent,andadaptive materials or structures implies an ability to be clever,sharp,active,fashionable,andsophisticated.However, in reality, materials or structures can never achieve true intelligence orreasoning without the addition of artificial intelligence through computers,microprocessors,controllogic,and control algorithms.Accordingly.the materials can only be active and the structures couldultimately be intelligent.Furthermore,the synergistic integration of smart materials,structures,sensors,actuators,and control electronics has redefined the concept of structures from aconventional passive elastic system to an active or adaptive(life-like)multi-functional structronic(structure+electronic)system with inherent self-sensing,diagnosis,and control capabilities[1-4].Thus,the goal of this paper is to review the fundamental characteristics,design principles,andpractical applications of key smart materials as outlined in TAB 1.1.The smart materials examinedinclude piezoelectrics,shape memory materials,electrostrictive materials,magnetostrictivematerials,electrorheological fluids,magnetorhe0109ical fluids,polyelectrolyte gels,pyroelectrics,photostrictive materials,photoferroelectric materials, magneto-optical materials, andsuperconducting materials.The requirements for multi-field opto-thermo-electro-magneto-mechanicalsystems applied to complicated multi-field control problems coupling elastic,temperature,electric,magnetic,and light interactions are also discussed.
圖書封面
評論、評分、閱讀與下載