<<电子设计自动化>>

图书基本信息

书名:<<电子设计自动化>>

13位ISBN编号: 9787512325500

10位ISBN编号:7512325509

出版时间:2012-7

出版时间:中国电力出版社

作者: 张永生 主编

页数:259

字数:405000

版权说明:本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:http://www.tushu007.com

<<电子设计自动化>>

内容概要

张永生主编的《电子设计自动化(第2版)》为普通高等教育"十二五

"规划教材(高职高专教育)。

本书采用实例和理论结合的形式,主要介绍了电子设计自动化(EDA)技术的 Multisim

9、Protel DXP 2004和。

MAX+plusII等3个主流软件。

全书共分为

IO章,分3个部分进行介绍,电路仿真设计部分使用Multisim

9软件包,主要介绍电路的连接、虚拟仪器的使用以及部分高级电路的分析方法;PCB设计部分使用Protel DXP

2004软件包,主要介绍原理图的绘制、PCB基础知识、PCB设计与输出以及元件库的设计等,并详细介绍了电路从原理图的设计到PCB输出的整个过程;PLD设计部分使用ALTERA公司开发的MAX+plus软件,主要介绍了VHDL硬件描述语言设计输入方法、原理图逻辑设计输入方法和波形设计输入方法,并详细介绍了硬件描述语言逻辑综合设计过程。

此外,每章均安排有实训,在书后还提供了职业技能鉴定考证方面的相关内容。

《电子设计自动化(第2版)》主要作为高职高专院校电子信息类专业的教材,也可供从事电子设计 人员和电子制作爱好者参考。

<<电子设计自动化>>

书籍目录

前言

第一章 概述
第一节 电子设计自动化(EDA)技术简介
第二节 常用电子设计自动化软件简介
第三节 本书主要软件的安装
小结
习题
第二章 Multisim 9仿真电路的绘制
第一节 Multisim 9系统基本界面介绍
第二节 Multisim 9仿真电路的绘制
第三节 Multisim9仿真电路图的打印输出与元件创建
小结
实训
习题
第三章 Multisim 9虚拟仪器的用法
第一节 常用指示器件的用法
第二节 常用虚拟仪器的用法
小结
实训
习题
第四章 Multisim 9常用仿真分析
第一节 仿真分析的步骤
第二节 常用分析方法
第三节 仿真中遇到问题的解决办法
小结
实训
第五章 电路仿真与应用实践(实训)
第一节 模拟电路仿真
第二节 数字电路仿真
小结 ^第 章 Protein DVP其初
第六章 Protel DXP基础 第一节 Protel DXP概述
第二节 Protei DXP做还 第二节 Protei DXP设计管理器及参数设置
第二节 Protei DXP设计管理
第四节 设置项目打印输出
第四 D 设置项目打印棚山 小结
习题
っ趣 第七章 应用Protel DXP设计电路原理图
第一节 显示的操作
第二节 原理图环境设置
第三节 装入元件库
第四节 元件的操作
第五节 导线的操作
ハ・エエ に ・1 ・2 ・1 ・1 ・1 ・1 ・1 ・1 ・1 ・1 ・1 ・1 ・1 ・1 ・1

第六节 电源与接地符号

<<电子设计自动化>>

第七节 网络标号
第八节 放置线路节点
第九节 制作电路的输入/输出端口
第十节 原理图布局的调整
第十一节 层次式电路的绘制
第十二节 检查电气连接和生成报表
第十三节 快捷键的使用
小结
实训
习题
第八章 应用Protel DXP设计电路板图
第一节 印制电路板概述
第二节 印制电路板编辑器界面缩放
第三节 工具栏的使用
第四节 Protel DXP印制电路板设计的步骤
第五节 电路板工作层面的设置
第六节 设置环境参数
第七节 规划电路板
第八节 准备电路原理图和网络表
第九节 网络表与元件封装的装入
第十节 自动布局
第十一节 网络密度分析
第十二节 3D效果图
第十二节 自动布线
第十二节 自动作线 第十四节 PCB验证和错误检查
第十四节「CDW证代错误检查 第十五节 PCB的高级编辑技巧
第十五月 50日的高级编辑投口 第十六节 印制电路板报表和打印电路板
第十八节 印刷电路恢报农和打印电路恢 小结
- · · ·
实训 习题
第九章 元件库的管理
第一节 Protel DXP元件库简介
第二节 创建元件原理图库
第三节 新建PCB器件库
第四节 创建集成元件库
小结
实训
习题
第十章 可编程器件开发系统MAX+plus
第一节 VHDL程序基本结构
第二节 VHDL语言的基本元素和基本描述语句
第三节 MAX+plus II概述
第四节 MAX+plus II编辑器的使用
第五节 VHDL硬件描述语言逻辑设计方法
小结
实训
习题

<<电子设计自动化>>

附录A 技能考证 附录B Protel DXP最常用的快捷键 附录C 常见错误及处理技巧 参考文献

<<电子设计自动化>>

章节摘录

版权页: 插图: 执行"剪切"与执行"复制"的方法相同,只是电路图上被选取的元件被删除。 要粘贴元件,按快捷键E、P,此时光标带着复制的对象出现在工作面上,光标与复制的元件距离远近,与复制时选择的参考点有关,将复制的对象移到适当位置单击一下左键,取消选择状态,即粘贴成功。

六、元件的删除 按Del键 , 可删除选择状态的元件。

按快捷键E、D,光标变成十字线,此时光标点住哪个元件,那个元件即被删除。

单击鼠标右键,退出删除状态。

七、元件的排列与对齐 执行主菜单命令Edit / Align / Align , 将弹出Align Objects(元件对齐)设置对话框。

元件对齐设置对话框主要包括三部分。

(1) Horizontal Alignment (水平对齐)选项区域,包括下面几种设置。

No Change:保持原状。 Left:水平左对齐。 Centre:水平中间对齐。 Right:水平右对齐。

Distribute equally:水平均匀分布。

- (2)Vertical Alignment(垂直对齐)选项区域与Horizontal Alignment选项区域设置基本相同,这里不再赘述。
- (3) Move primitives to grid单选项用于设定元件对齐时,是否将元件移动到格点上。

<<电子设计自动化>>

编辑推荐

<<电子设计自动化>>

版权说明

本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:http://www.tushu007.com