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0000 OO0 Manyoftheinequalities that we shall establish originally concern finitesequences and finite
sums[] We then extend them to infinite sequences andinfinite sums[] and to functions and integralsC] and it is
these more generalresults that are useful in applicationsC] Although the applications can be useful in simple settings
—concerning the Riemann integral of a continuous function] for example—the extensions areusually made by a
limiting process] For this reason we need to work in themore general setting of measure theoryd where
appropriate limit theoremshold] We give a brief account of what we need to know[J the details of the theory will
not be needed although it is hoped that the results that weeventually establish will encourage the reader to master
themO If you arenot familiar with measure theory[d read through this chapter quicklyl and then come back to it
when you find that the need arisesC] Suppose that Q isasetl] A measure ascribes a size to some of the subsetsof
Q O Itturns out that we usually cannot do this in a sensible way for all the subsets of Q [ and have to restrict
attention to the measurable subsets of Q [1 These are the 'good’ subsets of Q [1 and include all the sets that we
meet in practicel] The collection of measurable sets has a rich enough structure that we can carry out countable
limiting operationsC] A o —field Y isa collection of subsets of a set Q which satisfies O iJ if 0 Ail] isa
sequencein y then Uico =1AI0 Y O and i if AQ Y thenthecomplementQ \ADO 3 O Thus O iii0 if
O ALl isasequencein y then nico =1AI[0] Y [ Thesetsiny arecalled 3 —measurable setsC] ifit is clear
what 3 is0 they are simply called the measurable sets[]
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