解析數(shù)論導(dǎo)論

出版時間:2012-1  出版社:世界圖書出版公司  作者:阿波斯托爾  
Tag標(biāo)簽:無  

內(nèi)容概要

  《解析數(shù)論導(dǎo)論(英文版)》是一部為本科生提供學(xué)習(xí)數(shù)論的基本思想和技巧的教程,重點(diǎn)強(qiáng)調(diào)解析數(shù)論。前五章講述可約性、收斂和算術(shù)函數(shù)等基本概念。緊下來的章節(jié)講述序列中素數(shù)的狄利克萊定理、高斯和、二次剩余、狄利克萊級數(shù)和歐拉積及其在黎曼zeta函數(shù)和狄利克萊函數(shù)中的應(yīng)用,并且引進(jìn)了劃分的概念。書中每章末都收集了大量練習(xí)。前十章,除去第一章,任何具備基本微積分知識的人都可以讀懂;最后四章需要對復(fù)函數(shù)理論(包括復(fù)積分和留數(shù)積分)一定的了解。
  

書籍目錄

historical introduction
chapter 1 the fundamental theorem of arithmetic
 1.1 introduction
 1.2 divisibility
 1.3 greatest common divisor
 1.4 prime numbers
 1.5 the fundamental theorem of arithmetic
 1.6 the series of reciprocals of the primes
 1.7 the euclidean algorithm
 1.8 the greatest common divisor of more than two numbers
 exercises for chapter !
chapter 2 arithmetical functions and dirichlet multiplication
 2.1 introduction
 2.2 the mebius function mn)
 2.3 the euler totient function 0(n)
 2.4 a relation connecting (0 and it
 2.5 a product formula for (n)
 2.6 the dirichlet product of arithmetical functions
 2.7 dirichlet inverses and the mebius inversion formula
 2.8 the mangoidt function a(n)
 2.9 multiplicativefunctions
 2.10 multiplicative functions and dirichlet multiplication
 2.11 the inverse of a completely multiplicative function
 2.12 liouville's function ).(.)
 2.13 the divisor functions a,(n)
 2.14 generalized convolutions
 2.15 formal power series
 2.16 the bell series of an arithmetical function
 2.17 bell series and dirichlet multiplication
 2.18 derivatives of arithmetical functions
 2.19 the selberg identity
 exercises for chapter 2
chapter 3 averages of arithmetical functions
 3.1 introduction
 3.2 the big oh notation. asymptotic equality of functions
 3.3 euler's summation formula
 3.4 some elementary asymptotic formulas
 3.5 the average order old{n}
 3.6 the average order of the divisor functions a,(n)
 3.7 the average order of(n)
 3.8 an application to the distribution of lattice points visible
from the origin
 3.9 the average order of u(n) and of a(n)
 3.10 the partial sums ora dirichlet product
 3.11 applications to #(n) and a(n)
 3.12 another identity for the partial sums of a dirichlet
product
 exercises for chapter 3
chapter 4 some elementary theorems on the distribution of
prime
 numbers
 4.1 introduction
 4.2 chebyshev's functions (x) and ,9(x)
 4.3 relations connecting (x) and ri(x)
 4.4 some equivalent forms of the prime number theorem
 4.5 inequalities for ri(n) and pn
 4.6 shapiro's tauberian theorem
 4.7 applications of shapiro's theorem
 4.8 an asymptotic formula for the partial sums σpsx (i/p)
 4.9 the partial sums of the m6bius function
 4.10 brief sketch of an elementary proof of the prime number
theorem
 4.11 selberg's asymptotic formula
 exercises for chapter 4 lot
chapter 5 congruences
 5.1 definition and basic properties of congruences
 5.2 residue classes and complete residue systems
 5.3 linear congruences
 5.4 reduced residue systems and the euler-fermat theorem il
 5.5 polynomial congruences modulo p. lagrange's theorem
 5.6 applications of lagrange's theorem
 5.7 simultaneous linear congruences. the chinese remainder theorem
l !
 5.8 applications of the chinese remainder theorem il
 5.9 polynomial congruences with prime power moduli
 5.10 the principle of cross-classification
 5.11 a decomposition property of reduced residue systems
 exercises for chapter 5
chapter 6 finite abelian groups and their characters
 6.1 definitions
 6.2 examples of groups and subgroups
 6.3 elementary properties of groups
 6.4 construction of subgroups
 6.5 characters of finite abelian groups
 6.6 the character group
 6.7 the orthogonality relations for characters
 6.8 dirichlet characters
 6.9 sums involving dirichlet characters
 6.10 the nonvanishing of l(i, x) for real nonprincipal x l#l
 exercises for chapter 6
chapter 7 dirichlet's theorem on primes in arithmetic
progressions
 7.1 introduction
 7.2 dirichlet's theorem for primes of the form 4n - i and 4n +
i
 7.3 the plan of the proof of dirichlet's theorem
 7.4 proof of lemma 7.4
 7.5 proof of lemma 7.5
 7.6 proof of lemma 7.6
 7.7 proof of lemma 7.8
 7.8 proof of lemma 7.7
 7.9 distribution of primes in arithmetic progressions
 exercises for chapter 7
chapter 8 periodic arithmetical functions and gauss sums
 8.1 functions periodic modulo k
 8.2 existence of finite fourier series for periodic arithmetical
functions
 8.3 ramanujan's sum and generalizations
 8.4 multiplicative properties of the sums sk(n)
 8.5 gauss sums associated with dirichlet characters
 8.6 dirichlet characters with nonvanishing gauss sums
 8.7 induced moduli and primitive characters
 8.8 further properties of induced moduli
 8.9 the conductor of a character
 8.10 primitive characters and separable gauss sums
 8.11 the finite fourier series of the dirichlet characters
 8.12 p61ya's inequality for the partial sums of primitive
characters
 exercises for chapter 8
chapter 9 quadratic residues and the quadratic reciprocity
law
 9.1 quadratic residues
 9.2 legendre's symbol and its properties
 9.3 evaluation of(- lip) and (2]p)
 9.4 gauss' lemma
 9.5 the quadratic reciprocity law
 9.6 applications of the reciprocity law
 9.7 the jacobi symbol
 9.8 applications to diophantine equations
 9.9 gauss sums and the quadratic reciprocity law
 9.10 the reciprocity law for quadratic gauss sums
 9.11 another proof of the quadratic reciprocity law
 exercisesfor chapter 9
chapter 10 primitive roots
 10.1 the exponent ora number mod m. primitive roots
 10.2 primitive roots and reduced residue systems
 10.3 the nonexistence of primitive roots mod 2' for a ] 3
 10.4 the existence of primitive roots mod p for odd primes p
 10.5 primitive roots and quadratic residues
 10.6 the existence of primitive roots mod p
 10.7 the existence of primitive roots mod 2p
 10.8 the nonexistence of primitive roots in the remaining
cases
 10.9 the number of primitive roots mod m
 10.10 the index calculus
 10.11 primitive roots and dirichlet characters
 10.12 real-valued dirichlet characters mod p
 10.13 primitive dirichlet characters mod p
 exercises for chapter 10
chapter 11 dirichlet series and euler products
 11.1 introduction
 11.2 the half-plane of absolute convergence of a dirichlet
series
 11.3 the function defined by a dirichlet series
 11.4 multiplication of dirichlet series
 11.5 euler products
 11.6 the half-plane of convergence of a dirichlet series
 11.7 analytic properties of dirichlet series
 11.8 dirichlet series with nonnegative coefficients
 11.9 dirichlet series expressed as exponentials of dirichlet
series
 11.10 mean value formulas for dirichlet series
 11.11 an integral formula for the coefficients of a dirichlet
series
 11.12 an integral formula for the partial sums ora dirichlet
series
 exercises for chapter ii
chapter 12 the functions ζ(s) and l(s, x)
 12.1 introduction
 12.2 properties of the gamma function
 12.3 lntegrai representation for the hurwitz zeta function
 12.4 a contour integral representation for the hurwitz zeta
function
 12.5 the analytic continuation of the hurwitz zeta function
 12.6 analytic continuation of ζ(s) and l(s, x)
 12.7 hurwitz's formula for ζ(s, a)
 12.8 the functional equation for the riemann zeta function
 12.9 a functional equation for the hurwitz zeta function
 12.10 the functional equation for l-functions
 12.11 evaluation of ζ(-n, a)
 12.12 properties of bernoulli numbers and bernoulli
polynomials
 12.13 formulas for l(0, z)
 12.14 approximation of ζ(s, a) by finite sums
 12.15 inequalities for iζ(s, a)l
 12.16 inequalities for iζ(s)l and il(s, x)l
 exercises for chapter 12
chapter 13 analytic proof of the prime number theorem
 13.1 theplan of the proof
 13.2 lemmas
 13.3 a contour integral representation for ψ(x)/x2
 13.4 upper bounds for ┃ζ(s)┃and iζ'(s)[ near the line a =1
 13.5 the nonvanishing of ζ(s) on the line a =1
 13.6 inequalities for ┃1//ζ(s) and ┃ζ'(s)ζ(s)┃
 13.7 completion of the proof of the prime number theorem
 13.8 zero-free regions for ζ(s)
 13.9 the riemann hypothesis
 13.10 application to the divisor functi6n
 13.11 application to euler's totient
 13.12 extension of pe1ya's inequality for character sums
 exercises for chapter 13
chapter 14 partitions
 14.1 introduction
 14.2 geometric representation of partitions
 14.3 generating functions for partitions
 14.4 euler's pentagonal-number theorem
 14.5 combinatorial proof of euler's pentagonal-number
theorem
 14.6 euler's recursion formula for p(n)
 14.7 an upper bound for p(n)
 14.8 jacobi's triple product identity
 14.9 consequences of jacobi's identity
 14.10 logarithmic differentiation of generating functions
 14.11 the partition identities of ramanujan
 exercises for chapter 14
bibliography
index of special symbols
index
 
  

圖書封面

圖書標(biāo)簽Tags

評論、評分、閱讀與下載


    解析數(shù)論導(dǎo)論 PDF格式下載


用戶評論 (總計6條)

 
 

  •   西南師范大學(xué)出版社1992年2月出版過該書的中譯本. 然而全書的翻譯或印刷錯誤幾乎頁頁都有, 如果對數(shù)論不熟悉, 恐怕是難以讀下去的. 現(xiàn)在有了原文, 那個中譯本可以丟掉了。
    本書確實(shí)是解析數(shù)論的入門好書, 需要的預(yù)備知識不多, 但講到的內(nèi)容卻不少, 例如:
    算術(shù)基本定理
    數(shù)論函數(shù)與Dirichlet乘積
    數(shù)論函數(shù)的平均值
    素數(shù)分布的幾個基本定理
    同余式
    有限Abel群及其特征
    算術(shù)級數(shù)里素數(shù)的Dirichlet定理
    周期數(shù)論函數(shù)與Gauss和
    二次剩余與二次互反律
    原根
    Dirichlet級數(shù)與Euler乘積
    函數(shù)ζ(s)與L(s,χ)
    素數(shù)定理的解析證明
    分拆
  •   這本書是我上大四的時候讀的一本書,讀了好幾遍,感覺非常的好,可以作為學(xué)習(xí)數(shù)論的入門書,值得推薦!
  •   適合本科生看,有了數(shù)學(xué)分析和初等數(shù)論的基礎(chǔ)就可以看了!!
  •   簡明而詳細(xì)。
  •   經(jīng)典數(shù)學(xué)名著, 學(xué)數(shù)論必看的好書
  •   作者的另一本書也挺好的 以后再看啦
 

250萬本中文圖書簡介、評論、評分,PDF格式免費(fèi)下載。 第一圖書網(wǎng) 手機(jī)版

京ICP備13047387號-7