現(xiàn)代數(shù)學物理教程

出版時間:2011-6  出版社:世界圖書出版公司  作者:斯?jié)煽死姿? 編  頁數(shù):600  
Tag標簽:無  

內(nèi)容概要

  本書是一部學習數(shù)學物理入門書籍,也是一部教程,讓讀者在物理的背景下建立現(xiàn)代數(shù)學概念,重點強調(diào)微分幾何。寫作風格上保持了作者一貫的特點,清晰,透徹,引人入勝。大量的練習和例子是本書的一大亮點,擴展索引對初學者也是十分有用。內(nèi)容涵蓋了張量代數(shù),微分幾何,拓撲,李群和李代數(shù),分布理論,基礎(chǔ)分析和希爾伯特空間。目次:幾何與結(jié)構(gòu);群;向量空間;線性算子和矩陣;內(nèi)積空間;代數(shù);張量;外代數(shù);狹義相對論;拓撲學;測度論和積分;分布;希爾伯特空間;量子力學;微分幾何;微分形式;流形上的積分;聯(lián)絡(luò)和曲率;李群和李代數(shù)。
  讀者對象:數(shù)學、物理專業(yè)的本科生,研究生和相關(guān)的科研人員。

作者簡介

編者:(澳大利亞)斯?jié)煽死姿?(Peter Szekeres)

書籍目錄

acknowledgements
1 sets and structures
 1.1 sets and logic
 1.2 subsets, unions and intersections of sets
 1.3 cartesian products and relations
 1.4 mappings
 1.5 infinite sets
 1.6 structures
 1.7 category theory
2 groups
 2.1 elements of group theory
 2.2 transformation and permutation groups
 2.3 matrix groups
 2.4 homomorphisms and isomorphisms
 2.5 normal subgroups and factor groups
 2.6 group actions
 2.7 symmetry groups
3 vector spaces
 3.1 rings and fields
 3.2 vector spaces
 3.3 vector space homomorphisms
 3.4 vector subspaces and quotient spaces
 3.5 bases ofavector space
 3.6 summation convention and transformation of bases
 3.7 dual spaces
4 linear operators and matrices
 4.1 eigenspaces and characteristic equations
 4.2 jordan canonical form
 4.3 linear ordinary differential equations
 4.4 introduction to group representation theory
5 inner product spaces
 5.1 real inner product spaces
 5.2 complex inner product spaces
 5.3 representations of finite groups
6 algebras
 6.1 algebras and ideals
 6.2 complex numbers and complex structures
 6.3 quaternions and clifford algebras
 6.4 grassmann algebras
 6.5 lie algebras and lie groups
7 tensors
 7.1 free vector spaces and tensor spaces
 7.2 multilinear maps and tensors
 7.3 basis representation of tensors
 7.4 operations on tensors
8 exterior algebra
 8.1 r-vectors and r-forms
 8.2 basis representation of r-vectors
 8.3 exterior product
 8.4 interior product
 8.5 oriented vector spaces
 8.6 the hodge dual
9 special relativity
 9.1 minkowski space-time
 9.2 relativistic kinematics
 9.3 particle dynamics
 9.4 electrodynamics
 9.5 conservation laws and energy-stress tensors
10 topology
 10.1 euclidean topology
 10.2 general topological spaces
 10.3 metric spaces
 10.4 induced topologies
 10.5 hausdorff spaces
 10.6 compact spaces
 10.7 connected spaces
 10.8 topological groups
 10.9 topological vector spaces
11 measure theory and integration
 11.1 measurable spaces and functions
 11.2 measure spaces
 11.3 lebesgue integration
12 distributions
 12.1 test functions and distributions
 12.2 operations on distributions
 12.3 fourier transforms
 12.4 green's functions
13 hilbert spaces
 13.1 definitions and examples
 13.2 expansion theorems
 13.3 linear functionals
 13.4 bounded linear operators
 13.5 spectral theory
 13.6 unbounded operators
14 quantum mechanics
 14.1 basic concepts
 14.2 quantum dynamics
 14.3 symmetry transformations
 14.4 quantum statistical mechanics
15 differential geometry
 15.1 differentiable manifolds
 15.2 differentiable maps and curves
 15.3 tangent, cotangent and tensor spaces
 15.4 tangent map and submanifolds
 15.5 commutators, flows and lie derivatives
 15.6 distributions and frobenius theorem
16 differentiable forms
 16.1 differential forms and exterior derivative
 16.2 properties of exterior derivative
 16.3 frobenius theorem: dual form
 16.4 thermodynamics
 16.5 classical mechanics
17 integration on manifolds
 17.1 partitions of unity
 17.2 integration of n-forms
 17.3 stokes' theorem
 17.4 homology and cohomology
 17.5 the poincare lemma
18 connections and curvature
 18.1 linear connections and geodesics
 18.2 covariant derivative of tensor fields
 18.3 curvature and torsion
 18.4 pseudo-riemannian manifolds
 18.5 equation of geodesic deviation
 18.6 the riemann tensor and its symmetries
 18.7 caftan formalism
 18.8 general relativity
 18.9 cosmology
 18.10 variation principles in space-time
19 lie groups and lie algebras
 19.1 lie groups
 19.2 the exponential map
 19.3 lie subgroups
 19.4 lie groups of transformations
 19.5 groups of isometrics
bibliography
index

章節(jié)摘錄

版權(quán)頁:插圖:

編輯推薦

《現(xiàn)代數(shù)學物理教程》由世界圖書出版公司出版。

圖書封面

圖書標簽Tags

評論、評分、閱讀與下載


    現(xiàn)代數(shù)學物理教程 PDF格式下載


用戶評論 (總計6條)

 
 

  •   這是影印本,印刷質(zhì)量還不錯。是一部學習數(shù)學物理入門書籍,也是一部教程,適合老師和學生看
  •   相對這么大的體積來說,其實內(nèi)容不是很多...
  •   后面就像仍在水泥地面上摩擦過一樣,臟臟的,一本好書瞬間被搞得沒有看的欲望!
  •   介紹了群論,微分幾何,測度論等很現(xiàn)代的數(shù)學工具,很適合從事理論物理和數(shù)學物理方面的同學看,是很好的Arfken的后繼數(shù)目。
  •   教材內(nèi)容很全,印刷質(zhì)量基本看不出是影印,很真,不錯
  •   只是大體瀏覽了下,感覺內(nèi)容和Hassini差不多。就是敘述更簡練了些。作為入門教材還行吧。。。
 

250萬本中文圖書簡介、評論、評分,PDF格式免費下載。 第一圖書網(wǎng) 手機版

京ICP備13047387號-7