出版時(shí)間:2011-4 出版社:世界圖書出版公司 作者:蒂森 頁數(shù):620
Tag標(biāo)簽:無
內(nèi)容概要
This Second Edition has been fully updated. The wide range of
topics covered inthe First Edition has been extended with new
chapters on finite element methodsand lattice Boltzmann simulation.
New sections have been added to the chapters ondensity functional
theory, quantum molecular dynamics, Monte Carlo simulationand
diagonalisation of one-dimensional quantum systems.
The book covers many different areas of physics research and
different computa-tional methodologies, with an emphasis on
condensed matter physics and physicalchemistry. It includes
computational methods such as Monte Carlo and moleculardynamics,
various electronic structure methodologies, methods for solving
par-tial differential equations, and lattice gauge theory.
Throughout the book, therelations between the methods used in
different fields of physics are emphas-ised. Several new programs
are described and these can be downloaded
fromwww.cambridge.org/9780521833462
The book requires a background in elementary programming,
numerical analysisand field theory, as well as undergraduate
knowledge of condensed matter theoryand statistical physics. It
will be of interest to graduate students and researchers
intheoretical, computational and experimental physics.Jos THIJSSEN
is a lecturer at the Kavli Institute of Nanoscience at Delft
Universityof Technology.
作者簡介
作者:(荷蘭)蒂森(J.M.Thijssen)
書籍目錄
preface to the first edition
preface to the second edition
1 introduction
1.1 physics and computational physics
1.2 classical mechanics and statistical mechanics
1.3 stochastic simulations
1.4 electrodynamics and hydrodynamics
1.5 quantum mechanics
1.6 relations between quantum mechanics and classical statistical
physics
1.7 quantum molecular dynamics
1.8 quantum field theory
1.9 about this book
exercises
references
2 quantum scattering with a spherically symmetric
potential
2.1 introduction
2.2 a program for calculating cross sections
2.3 calculation of scattering cross sections
exercises
references
3 the variational method for the schr'odinger equation
3.1 variational calculus
3.2 examples of variational calculations
3.3 solution of the generalised eigenvalue problem
3.4 perturbation theory and variational calculus
exercises
references
4 the hartree-fock method
4.1 introduction
4.2 the bom-oppenheimer approximation and the independent-particle
method
4.3 the helium atom
4.4 many-electron systems and the slater determinant
4.5 self-consistency and exchange: hartree-fock theory
4.6 basis functions
4.7 the structure of a hartree-fock computer program
4.8 integrals involving gaussian functions
4.9 applications and results
4.10 improving upon the hartree-fock approximation
exercises
references
5 density functional theory
5.1 introduction
5.2 the local density approximation
5.3 exchange and correlation: a closer look
5.4 beyond dft: one- and two-particle excitations
5.5 a density functional program for the helium atom
5.6 applications and results
exercises
references
6 solving the schriodinger equation in periodic solids
6.1 introduction: definitions
6.2 band structures and bloch's theorem
6.3 approximations
6.4 band structure methods and basis functions
6.5 augmented plane wave'methods
6.6 the linearised apw (lapw) method
6.7 the pseudopotential method
6.8 extracting information from band structures
6.9 some additional remarks
6.10 other band methods
exercises
references
7 classical equilibrium statistical mechanics
7.1 basic theory
7.2 examples of statistical models; phase transitions
7.3 phase transitions
7.4 determination of averages in simulations
exercises
references
8 Molecular dynamics simulations
8.1 introduction
8.2 molecular dynamics at constant energy
8.3 a molecular dynamics simulation program for argon
8.4 integration methods: symplectic integrators
8.5 molecular dynamics methods for different ensembles
8.6 molecular systems
8.7 long-range interactions
8.8 langevin dynamics simulation
8.9 dynamical quantities: nonequilibrium molecular dynamics
exercises
references
9 quantum molecular dynamics
9.1 introduction
9.2 the molecular dynamics method
9.3 an example: quantum molecular dynamics for the hydrogen
molecule
9.4 orthonormalisation; conjugate gradient and rm-diis
techniques
9.5 implementation of the car-parrinello technique for
pseudopotential dft
exercises
references
10 the monte carlo method
10.1 introduction
10.2 monte carlo integration
10.3 importance sampling through markov chains
10.4 other ensembles
10.5 estimation of free energy and chemical potential
10.6 further applications and monte carlo methods
10.7 the temperature of a finite system
exercises
references
11 transfer matrix and diagonalisation of spin chains
11.1 introduction
11.2 the one-dimensional ising model and the transfer matrix
11.3 two-dimensional spin models
11.4 more complicated models
11.5 'exact' diagonalisation of quantum chains
11.6 quantum renormalisation in real space
11.7 the density matrix renormalisation group method
exercises
references
12 quantum monte carlo methods
12.1 introduction
12.2 the variational monte carlo method
12.3 diffusion monte carlo
12.4 path-integral monte carlo
12.5 quantum monte carlo on a lattice
12.6 the monte carlo transfer matrix method
exercises
references
13 the finite element method for partial differential
equations
13.1 introduction
13.2 the poisson equation
13.3 linear elasticity
13.4 error estimators
13.5 local refinement
13.6 dynamical finite element method
13.7 concurrent coupling of length scales: fem and md
exercises
references
14 the lattice boltzmann method for fluid dynamics
14.1 introduction
14.2 derivation of the navier-stokes equations
14.3 the lattice boltzmann model
14.4 additional remarks
14.5 derivation of the navier-stokes equation from the
lattice boltzmann model
exercises
references
15 computational methods for lattice field theories
15.1 introduction
15.2 quantum field theory
15.3 interacting fields and renormalisation
15.4 algorithms for lattice field theories
15.5 reducing critical slowing down
15.6 comparison of algorithms for scalar field theory
15.7 gauge field theories
exercises
references
16 high performance computing and parallelism
16.1 introduction
16.2 pipelining
16.3 parallelism
16.4 parallel algorithms for molecular dynamics
references
Appendix a numerical methods
A1 about numerical methods
A2 iterative procedures for special functions
A3 finding the root of a function
A4 finding the optimum of a function
A5 discretisation
A6 numerical quadratures
A7 differential equations
A8 linear algebra problems
A9 the fast fourier transform
exercises
references
appendix b random number generators
B1 random numbers and pseudo-random numbers
B2 random number generators and properties of pseudo-random
numbers
B3 nonuniform random number generators
exercises
references
index
章節(jié)摘錄
版權(quán)頁:插圖:Now we can define the problems in a more abstract way. It is convenient toconsider continuum problems. The candidate solutions (for example the possibleconformations) form a phase space, and the merit function has some complicatedshape on that space - it contains many valleys and mountains, which can be verysteep. The solution we seek corresponds to the lowest valley in the landscape. Notethat the landscape is high-dimensional. You may think, naively, that a standardnumerical minimum finder can solve this problem for you. However, this is notthe case as such an algorithm always needs a starting point, from which it findsthe nearest local minimum, which is not necessarily the best you can find in theconformation space. The set of points which would go to one particular local min-imum when fed into a steepest descent or other minimum-finder (see AppendixA4) is called the basin of attraction of that minimum. Once we are in the basinof attraction of the global minimum we can easily find this global minimum; theproblem is to find its basin of attraction.
編輯推薦
《計(jì)算物理學(xué)(英文版)(第2版)》是由世界圖書出版公司出版的。
圖書封面
圖書標(biāo)簽Tags
無
評(píng)論、評(píng)分、閱讀與下載