出版時(shí)間:2011-1 出版社:世界圖書出版公司 作者:Iran N. Levine 頁數(shù):751
Tag標(biāo)簽:無
內(nèi)容概要
a solutions manual for the problems in the
book is available.
the expanding role of quantum chemistry makes it highly
desirable for students in all areas of chemistry to understand
modern methods of electronic structure calcula-tion, and this book
has been written with this goal in mind.
i have tried to make explanations clear and complete, without
glossing over diffi-cult or subtle points. derivations are given
with enough detail to make them easy to fol-low, and i avoid
resorting to the frustrating phrase "it can be shown that" wherever
possible. the aim is to give students a solid understanding of the
physical and mathe-matical aspects of quantum mechanics and
molecular electronic structure. the book is designed to be useful
to students in all branches of chemistry, not just future quantum
chemists. however, the presentation is such that those who do go on
in quantum chem-istry will have a good foundation and will not be
hampered by misconceptions.
an obstacle faced by many chemistry students in learning quantum
mechanics is their unfamiliarity with much of the required
mathematics. in this text i have included detailed treatments of
operators, differential equations, simultaneous linear
equations,and other needed topics. rather than putting all the
mathematics in an introductory chapter or a series of appendices, i
have integrated the mathematics with the physics and chemistry.
immediate application of the mathematics to solving a
quantum-mechanical problem will make the mathematics more
meaningful to students than would separate study of the
mathematics. i have also kept in mind the limited physics
background of many chemistry students by reviewing topics in
physics.
書籍目錄
preface ix
1 the schrodinger equation
1.1 quantum chemistry,
1.2 historical background of quantum mechanics,
1.3 the uncertainty principle,
1.4 the time-dependent schr6dinger equation,
1.5 the time-independent schr6dinger equation,
1.6 probability,
1.7 complex numbers,
1.8 units,
1.9 calculus,
1.10 summary,
2 the particle in a box
2.1 differential equations,
2.2 particle in a one-dimensional box,
2.3 the free particle in one dimension,
2.4 particle in a rectangular well,
2.5 tunneling,
2.6 summary,
3 operators
3.1 operators,
3.2 eigenfunctions and eigenvalues,
3.3 operators and quantum mechanics,
3.4 the three-dimensional, many-particle schr6dinger
equation,
3.5 the particle in a three-dimensional box,
3.6 degeneracy,
3.7 average values,
3.8 requirements for an acceptable wave function,
3.9 summary,
4 the harmonic oscillator
4.1 power-series solution of differential equations,
4.2 the one-dimensional harmonic oscillator,
4.3 vibration of molecules,
4.4 numerical solution of the one-dimensional time-independent
schrodinger equation,
4.5 summary,
5 angular momentum
5.1 simultaneous specification of several properties,
5.2 vectors,
5.3 angular momentum of a one-particle system,
5.4 the ladder-operator method for angular momentum,
5.5 summary,
6 the hydrogen atom
6.1 the one-particle central-force problem,
6.2 noninteracting particles and separation of
variables,
6.3 reduction of the two-particle problem to two one-particle
problems,
6.4 the two-particle rigid rotor,
6.5 the hydrogen atom,
6.6 the bound-state hydrogen-atom wave functions,
6.7 hydrogenlike orbitals,
6.8 the zeeman effect,
6.9 numerical solution of the radial schrodinger
equation,
6.10 summary,
7 theorems of quantum mechanics
7.1 introduction,
7.2 hermitian operators,
7.3 expansion in terms of eigenfunctions,
7.4 eigenfunctions of commuting operators,
7.5 parity,
7.6 measurement and the superposition of states,
7.7 position eigenfunctions,
7.8 the postulates of quantum mechanics,
7.9 measurement and the interpretation of quantum
mechanics,
7.10 matrices,
7.11 summary,
8 the variation method
8.1 the variation theorem,
8.2 extension of the variation method,
8.3 determinants,
8.4 simultaneous linear equations,
8.5 linear variation functions,
8.6 matrices, eigenvalues, and eigenvectors,
8.7 summary,
9 perturbation theory
9.1 introduction,
9.2 nondegenerate perturbation theory,
9.3 perturbation treatment of the helium-atom ground
state,
9.4 variation treatments of the ground state of helium,
9.5 perturbation theory for a degenerate energy level,
9.6 simplification of the secular equation,
9.7 perturbation treatment of the first excited states of
helium,
9.8 comparison of the variation and perturbation
methods,
9.9 time-dependent perturbation theory,
9.10 interaction of radiation and matter,
9.11 summary,
10 electron spin and the spin-statistics theorem
10.1 electron spin,
10.2 spin and the hydrogen atom,
10.3 the spin-statistics theorem,
10.4 the helium atom,
10.5 the pauli exclusion principle,
10.6 slater determinants,
10.7 perturbation treatment of the lithium ground
state,
10.8 variation treatments of the lithium ground state,
10.9 spin magnetic moment,
10.10 ladder operators for electron spin,
10.11 summary,
11 many-electron atoms
11.1 the hartree-fock self-consistent-field method,
11.2 orbitals and the periodic table,
11.3 electron correlation,
11.4 addition of angular momenta,
11.5 angular momentum in many-electron atoms,
11.6 spin-orbit interaction,
11.7 the atomic hamiltonian,
11.8 the condon-slater rules,
11.9 summary,
12 molecular symmetry
12.1 symmetry elements and operations,
12.2 symmetry point groups,
12.3 summary,
13 electronic structure of diatomic molecules
13.1 the born-oppenheimer approximation,
13.2 nuclear motion in diatomic molecules,
13.3 atomic units,
13.4 the hydrogen molecule ion,
13.5 approximate treatments of the h+2 ground electronic
state,
13.6 molecular orbitals for hi excited states,
13.7 mo configurations of homonuclear diatomic
molecules,
13.8 electronic terms of diatomic molecules,
13.9 the hydrogen molecule,
13.10 the valence-bond treatment of h2,
13.11 comparison of the mo and vb theories,
13.12 mo and vb wave functions for homonuclear diatomic
molecules,
13.13 excited states of he,
13.14 scf wave functions for diatomic molecules,
13.15 mo treatment of heteronuclear diatomic molecules,
13.16 vb treatment of heteronuclear diatomic molecules,
13.17 the valence-electron approximation,
13.18 summary,
14 theorems of molecular quantum mechanics
14.1 electron probability density,
14.2 dipole moments,438
14.3 the hartree-fock method for molecules,
14.4 the virial theorem,
14.5 the virial theorem and chemical bonding,
14.6 the hellmann-feynman theorem,
14.7 the electrostatic theorem,
14.8 summary,
15 molecular electronicstructure
15.1 ab initio, density-functional, semiempirical,
and molecular-mechanics methods,
15.2 electronic terms of polyatomic molecules,
15.3 the scf mo treatment of polyatomic molecules,
15.4 basis functions,
15.5 the scf mo treatment of h20,
15.6 population analysis and bond orders,
15.7 the molecular electrostatic potential, molecular
surfaces,
and atomic charges,
15.8 localized mos,
15.9 the scf mo treatment of methane, ethane, and
ethylene,
15.10 molecular geometry,
15.11 conformational searching,
15.12 molecular vibrational frequencies,
15.13 thermodynamic properties,
15.14 ab initio quantum chemistry programs,
15.15 performing ab initio calculations,
15.16 speeding up hartree-fock calculations,
15.17 solvent effects,
16 electron-correlation methods
16.1 configuration interaction,
16.2 m011er-plesset (mp) perturbation theory,
16.3 the coupled-cluster method,
16.4 density-functional theory,
16.5 composite methods for energy calculations,
16.6 the diffusion quantum monte carlo method,
16.7 relativistic effects,
16.8 valence-bond treatment of polyatomic molecules,
16.9 the gvb, vbscf, and bovb methods,
16.10 chemical reactions,
17 semiempirical and molecular-mechanics treatments of
molecules
17.1 semiempirical mo treatments of planar conjugated
molecules,
17.2 the hiickel mo method,
17.3 the pariser-parr-pople method,
17.4 general semiempirical mo and dft methods,
17.5 the molecular-mechanics method,
17.6 empirical and semiempirical treatments of solvent
effects,
17.7 chemical reactions,
18 comparisons of methods
18.1 molecular geometry,
18.2 energy changes,
18.3 other properties,
18.4 hydrogen bonding,
18.5 conclusion,
18.6 the future of quantum chemistry,
appendix
bibliography
answers to selected problems
index
編輯推薦
《量子化學(xué)(第6版)》共18章,總共750多頁,內(nèi)容非常豐富。書中把量子力學(xué)的基本原理,各個(gè)不同體系中薛定諤方程及其近似解法,尤其針對(duì)化學(xué)特有的分子體系的量子力學(xué)理論與電子結(jié)構(gòu)計(jì)算方法(從頭算、密度函數(shù)、半經(jīng)驗(yàn)、分子力學(xué)、價(jià)鍵理論)進(jìn)行了詳細(xì)介紹,并針對(duì)上述方法在計(jì)算基態(tài)分子性質(zhì)的性能方面進(jìn)行了十分詳細(xì)的對(duì)比分析,對(duì)實(shí)際應(yīng)用有很好的參考價(jià)值。
圖書封面
圖書標(biāo)簽Tags
無
評(píng)論、評(píng)分、閱讀與下載