出版時(shí)間:2009-8 出版社:世界圖書出版公司 作者:宰德勒 頁數(shù):1202
Tag標(biāo)簽:無
前言
自1932年,波蘭數(shù)學(xué)家Banach發(fā)表第一部泛函分析專著“Theorie des operations lineaires”以來,這一學(xué)科取得了巨大的發(fā)展,它在其他領(lǐng)域的應(yīng)用也是相當(dāng)成功。如今,數(shù)學(xué)的很多領(lǐng)域沒有了泛函分析恐怕寸步難行,不僅僅在數(shù)學(xué)方面,在理論物理方面的作用也具有同樣的意義,M.Reed和B.Simon的“Methods of Modern MathematicalPhysjcs”在前言中指出:“自1926年以來,物理學(xué)的前沿已與日俱增集中于量子力學(xué),以及奠定于量子理論的分支:原子物理、核物理固體物理、基本粒子物理等,而這些分支的中心數(shù)學(xué)框架就是泛函分析?!彼?,講述泛函分析的文獻(xiàn)已浩如煙海。而每個(gè)時(shí)代,都有這個(gè)領(lǐng)域的代表性作品。例如上世紀(jì)50年代,F(xiàn).Riesz和Sz.-Nagy的《泛函分析講義》(中譯版,科學(xué)出版社,1985),就是那個(gè)時(shí)代的一部具有代表性的著作;而60年代,N.Dunford和J.Schwartz的三大卷“Linear Operators”則是泛函分析學(xué)發(fā)展到那個(gè)時(shí)代的主要成果和應(yīng)用的一個(gè)較全面的總結(jié)。泛函分析一經(jīng)產(chǎn)生,它的發(fā)展就受到量子力學(xué)的強(qiáng)有力的推動,上世紀(jì)70年代,M.Reed和B.Simon的4卷“Methods 0f M0dern Mathematical Physics”是泛函分析對于量子力學(xué)應(yīng)用的一個(gè)很好的總結(jié)。
內(nèi)容概要
這部書講清楚了泛函分析理論對數(shù)學(xué)其他領(lǐng)域的應(yīng)用。例如,第2A卷講述線性單調(diào)算子。他從橢圓型方程的邊值問題出發(fā),講問題的古典解,由于具體物理背景的需要,問題須作進(jìn)一步推廣,而需要討論問題的廣義解。這種方法背后的分析原理是什么?其實(shí)就是完備化思想的一個(gè)應(yīng)用!將古典問題所依賴的連續(xù)函數(shù)空間,完備化成為Sobolev空間,則可討論問題的廣義解。在這種討論中間,我們可以看到Hilbert空間的作用。書中不僅有這種理論討論,而且還講了怎樣計(jì)算問題的近似解(Ritz方法)。 這部書講清楚了分析理論在諸多領(lǐng)域(如物理學(xué)、化學(xué)、生物學(xué)、工程技術(shù)和經(jīng)濟(jì)學(xué)等等)的廣泛應(yīng)用。例如,第3卷講解變分方法和優(yōu)化,它從函數(shù)極值問題開始,講到變分問題及其對于Euler微分方程和Hammerstein積分方程的應(yīng)用;講到優(yōu)化理論及其對于控制問題(如龐特里亞金極大值原理)、統(tǒng)計(jì)優(yōu)化、博弈論、參數(shù)識別、逼近論的應(yīng)用;講了凸優(yōu)化理論及應(yīng)用;講了極值的各種近似計(jì)算方法。比如第4卷,講物理應(yīng)用,寫作原理是:由物理事實(shí)到數(shù)學(xué)模型;由數(shù)學(xué)模型到數(shù)學(xué)結(jié)果;再由數(shù)學(xué)結(jié)果到數(shù)學(xué)結(jié)果的物理解釋;最后再回到物理事實(shí)。 再次,該書由淺入深地講透了基本理論的發(fā)展歷程及走向,它既講清楚了所涉及學(xué)科的具體問題,也講清楚了其背后的數(shù)學(xué)原理及其作用。數(shù)學(xué)理論講得也非常深入,例如,不動點(diǎn)理論,就從Banach不動點(diǎn)定理講到Schauder不動點(diǎn)定理,以及Bourbaki—Kneser不動點(diǎn)定理等等。 這套書的寫作起點(diǎn)很低,具備本科數(shù)學(xué)水平就可以讀;應(yīng)用都是從最簡單情形入手,應(yīng)用領(lǐng)域的讀者也可以讀;全書材料自足,各部分又盡可能保持獨(dú)立;書后附有極其豐富的參考文獻(xiàn)及一些文獻(xiàn)評述;該書文字優(yōu)美,引用了許多大師的格言,讀之你會深受啟發(fā)。這套書的優(yōu)點(diǎn)不勝枚舉,每個(gè)與數(shù)理學(xué)科相關(guān)的人,搞理論的,搞應(yīng)用的,搞研究的,搞教學(xué)的,都可讀該書,哪怕只是翻一翻,都不會空手而返!
作者簡介
作者:(德國)宰德勒
書籍目錄
Preface to Part II/BGENERALIZATION TO NONLINEAR STATIONARY PROBLEMS Basic Ideas of the Theory of Monotone Operators CHAPTER 25 Lipschitz Continuous, Strongly Monotone Operators, the Projection-lteration Method, and Monotone Potential Operators 25.1.Sequences of k-Contractive Operators 25.2.The Projection Iteration Method for k-Contractive Operators 25.3.Monotone Operators 25.4.The Main Theorem on Strongly Monotone Operators, and the Projection-Iteration Method 25.5.Monotone and Pseudomonotone Operators, and the Calculus of Variations 25.6.The Main Theorem on Monotone Potential Operators 25.7.The Main Theorem on Pseudomonotone Potential Operators 25.8.Application to the Main Theorem on Quadratic Variational Inequalities 25.9.Application to Nonlinear Stationary Conservation Laws 25.10.Projection Iteration Method for Conservation Laws 25.11.The Main Theorem on Nonlinear Stationary Conservation Laws 25.12.Duality Theory for Conservation Laws and Two-sided a posterior.i Error Estimates for the Ritz Method 25.13.The Kacanov Method for Stationary Conservation Laws 25.14.The Abstract Kacanov Method for Variational Inequalities CHAPTER 26 Monotone Operators and Quasi-Linear Elliptic Differential Equations 26.1.Hemicontinuity and Demicontinuity 26.2.The Main Theorem on Monotone Operators 26.3.The Nemyckii Operator 26.4.Generalized Gradient Method for the Solution of the Galerkin Equations 26.5.Application to Quasi-Linear Elliptic Differential Equations of Order 2m 26.6.Proper Monotone Operators and Proper Quasi-Linear Elliptic Differential Operators CHAPTER 27 Pseudomonotone Operators and Quasi-Linear Elliptic Differential Equations 27.1.The Conditions (M) and (S), and the Convergence of the Galerkin Method 27.2.Pseudomonotone Operators 27.3.The Main Theorem on Pseudomonotone Operators 27.4.Application to Quasi-Linear Elliptic Differential Equations 27.5.Relations Between Important Properties of Nonlinear Operators 27.6.Dual Pairs of B-Spaces 27.7.The Main Theorem on Locally Coercive Operators 27.8.Application to Strongly Nonlinear Differential Equations CHAPTER 28 Monotone Operators and Hammerstein Integral Equations 28.1.A Factorization Theorem for Angle-Bounded Operators 28.2.Abstract Hammerstein Equations with Angle-Bounded Kernel Operators 28.3.Abstract Hammerstein Equations with Compact Kernel Operators 28.4.Application to Hammerstein Integral Equations 28.5.Application to Semilinear Elliptic Differential Equations CHAPTER 29 Noncoercive Equations, Nonlinear Fredholm Alternatives,Locally Monotone Operators, Stability, and Bifurcation 29.1.Pseudoresolvent, Equivalent Coincidence Problems, and the Coincidence Degree 29.2.Fredholm Alternatives for Asymptotically Linear, Compact Perturbations of the Identity 29.3.Application to Nonlinear Systems of Real Equations 29.4.Application to Integral Equations 29.5.Application to Differential Equations 29.6.The Generalized Antipodal Theorem 29.7.Fredholm Alternatives for Asymptotically Linear (S)-Operators 29.8.Weak Asymptotes and Fredholm Alternatives ……GENERALIZATION TO NONLINEAR NONSTATIONARY PROBLEMSGENERAL THEORY OF DISCRETIZATION METHODSAppendixReferencesList of SymbolsList of TheoremsList of the Most Important DefinitionsList of Schematic OverviewsList of Important PrinciplesIndex
章節(jié)摘錄
插圖:
編輯推薦
《非線性泛函分析及其應(yīng)用,第2B卷,非線性單調(diào)算子》的寫作起點(diǎn)很低,具備本科數(shù)學(xué)水平就可以讀。
圖書封面
圖書標(biāo)簽Tags
無
評論、評分、閱讀與下載
非線性泛函分析及其應(yīng)用 第2B卷《非線性單調(diào)算子》 PDF格式下載