希爾伯特空間問題集

出版時間:2009-4  出版社:世界圖書出版公司  作者:哈爾莫斯  頁數(shù):369  
Tag標(biāo)簽:無  

前言

  The only way to learn mathematics iS to do mathematics.That tenet iS the foundation of the do.it.yourself,Socratic,or Texas method。the method in which the teacher plays the role of an omniscient but largely uncommuni. cative referoe between the learner and the facts.Although that method iS usually and perhaps necessarily oral。this book tries to use the same method to give a written exposition of certain topics in Hilben space theory.  The right way to read mathematics iS first to read the definitions of the concepts and the statements of the theorems,and then,putting the book aside,to try to discover the appropriate proofs.If the theorems are not trivial,the attempt might fail,but it iS likely to bc instructive just the same. To the passive reader a routine computation and a miracle of ingenuity come with equal ease,and later,when he must depend on himself。he will find that they went as easily as they came.The active reader,who has found out what does not work.iS in a much better position to understand the reason ror the SUCCESS of the author’S method,and。Iater,to find answers that are not in books.  This book was written for the active reader.Thc first part consists of problems,frequently preceded by definitions and motivation。and some. times followed by corollaries and historical remarks.Most of the problems are statements to be proved,but some are questions(is it?。what is?),and some are challenges(construct,determine).The second part,a very short one,consists of hints.A hint iS a word。or a paragraph,usually intended to help the reader find a solution.The hint itself iS not necessarily a con. densed solution of the problem:it may iust point to what I regard as the heart of the matter.Sometimes a problem contains a trap,and the hint may serve to chide the reader for rushing in too recklessly.The third part.

內(nèi)容概要

  This book was written for the active reader. The first part consists of problems, frequently preceded by definitions and motivation, and some-times followed by corollaries and historical remarks. Most of the problems are statements to be proved, but some are questions (is it?, what is?), and some are challenges (construct, determine). The second part, a very short one, consists of hints. A hint is a word, or a paragraph, usually intended to help the reader find a solution. The hint itself is not necessarily a con-densed solution of the problem; it may just point to what I regard as the heart of the matter. Sometimes a problem contains a trap, and the hint may serve to chide the reader for rushing in too recklessly. The third part, the longest, consists of solutions: proofs, answers, or constructions, depending on the nature of the problem

書籍目錄

1. VECTORS  1. Limits of quadratic forms  2. Schwarz inequality  3. Representation of linear functionals  4. Strict convexity  5. Continuous curves  6. Uniqueness of crinkled arcs  7. Linear dimension  8. Total sets  9. Infinitely total sets 10. Infinite Vandermondes 11. T-total sets 12. Approximate bases2. SPACES 13. Vector sums 14. Lattice of subspaces 15. Vector sums and the modular law 16. Local compactness and dimension 17. Separability and dimension 18. Measure in Hiibert space3.  WEAK TOPOLOGY 19. Weak closure of subspaces 20. Weak continuity of norm and inner product 21. Semicontinuity of norm 22. Weak separability 23. Weak compactness of the unit bali 24. Weak metrizabilitv of the unit ball 25. Weak closure of the unit sphere 26. Weak metrizability and separability 27. Uniform boundedness 28. Weak metrizability of Hilbert space 29. Linear functionals on /2 30. Weak completeness4. ANALYTIC  FUNCTIONS 31. Analytic Hilbert spaces 32. Basis for Ae 33. Real functions in He 34. Products in H2 35. Analytic characterization of H2 36. Functional Hilbcrt spaces 37. Kernel functions 38. Conjugation in functional Hilbert spaces 39. Continuity of extension 40. Radial limits 41. Bounded approximation 42. Multiplicativity of extension 43. Dirichlet problem5.  INFINITE MATRICES 44. Column-finite matrices 45. Schur test 46. Hilbert matrix 47. Exponential Hilbert matrix 48. Positivity of the Hilbert matrix 49. Series of vectors6. BOUNDEDNESS AND  INVERTIBILITY 50. Boundedness on bases 51. Uniform boundedness of linear transformations 52. lnvertible transformations 53. Diminishable complements 54. Dimension in inner-product spaces 55. Total orthonormal sets 56. Preservation of dimension 57. Projections of equal rank 58. Closed graph theorem 59. Range inclusion and factorization 60. Unbounded symmetric transformations7.MULTIPLICATION  OPERATORS 61. Diagonal operators 62. Multiplications on 12 63. Spectrum of a diagonal operator 64. Norm of a multiplication……

圖書封面

圖書標(biāo)簽Tags

評論、評分、閱讀與下載


    希爾伯特空間問題集 PDF格式下載


用戶評論 (總計(jì)3條)

 
 

  •   這本書是Halmos教授的名著,他還有好幾本名著。本書英文原版是著名的GTM叢書第19本,適合數(shù)學(xué)研究生閱讀。對研究希爾伯特空間和泛函分析的讀者,本書很有價值。
  •   玻姆哥本哈根解釋提出了反建議,德布羅意也在某種程度上采納了這種見解。玻姆把粒子看作是“客觀實(shí)在的”結(jié)構(gòu),就象牛頓力學(xué)中的質(zhì)點(diǎn)一樣。位形空間中的波在他的解釋中也是“客觀實(shí)在的”,就象電場一樣。位形空間是牽涉到屬于系統(tǒng)的全部粒子的不同坐標(biāo)的一個多維空間。遇到了第一個困難:說位形空間中的波是“實(shí)在的”,究竟是什么意協(xié)這個空間是一個很抽象的空間?!皩?shí)在的”一詞起源于拉丁字“res”(實(shí)體),它的意思是“物”;但物是存在于通常的三維空間中,而不是存在于抽象的位形空間中的。當(dāng)人們想說位形空間中的波與任何觀測者無關(guān)時,人們可以說這些波是“客觀的”;但人們很難說它們是“實(shí)在的”,除非人們甘愿改變這個詞的含義。玻姆進(jìn)一步規(guī)定恒波相面的法線是粒子的可能軌道。按照他的想法,這些法線中哪一條是“實(shí)在的”軌道取決于系統(tǒng)和測量儀器的歷史,并且如果對系統(tǒng)與測量儀器的了解不比實(shí)際上能了解的更多的話,“實(shí)在的”軌道就無法確定。這種歷史實(shí)際上包含了隱參量,它就是實(shí)驗(yàn)開始以前的“實(shí)際”軌道。

    泡利(Pauli)所強(qiáng)調(diào)指出的,這種解釋的一個結(jié)果是:許多原子中的一些基態(tài)電子應(yīng)當(dāng)是靜止的,不環(huán)繞原子核作任何軌道運(yùn)動。這似乎和實(shí)驗(yàn)相矛盾,因?yàn)閷鶓B(tài)中電子速度的測量(例如,用康普頓效應(yīng)的方法),總是顯示出基態(tài)中有一個速度分布,它由動量空間或速度空間中的波國數(shù)的平方所給出——這符合于量子力學(xué)定則。但是,這里玻姆能夠辯解說,這時測量已經(jīng)不能再用普通定律來估算了。他同意測量的正常估算確實(shí)會得出速度分布;但當(dāng)考慮到關(guān)于測量儀器的量子論——特別是由玻姆在這方面引入的某些奇特的量子勢時,那么,電子老是“實(shí)在地”靜止著的陳述是講得通的。在粒子位置的測量中,玻姆認(rèn)為實(shí)驗(yàn)的通常解釋是正確的;而在速度測量中,他拒絕了通常的解釋。以此為代價,玻姆認(rèn)為他自己有權(quán)利主張:“我們不必在量子論的領(lǐng)域中放棄單個系統(tǒng)的準(zhǔn)確、合理和客觀的描述?!比欢?,這種客觀描述本身卻象是一種“意識形態(tài)的上層建筑”,它與直接的物理實(shí)在關(guān)系很少;因?yàn)槿绻孔诱摫3植蛔兊脑?,玻姆解釋中的隱參量就是永遠(yuǎn)不能在實(shí)在過程的描述中出現(xiàn)的那樣一種東西。

    為了避免這種困難,玻姆實(shí)際上表達(dá)了這樣一個希望:將來在基本粒子的領(lǐng)域的實(shí)驗(yàn)中,隱參量可能會起一部分物理作用,而量子論將因此被證明為錯誤的。在講到這樣一些奇怪的希望時,玻爾常常說它們在結(jié)構(gòu)上就象是這樣的一些句子:“我們可以希望以后會證明有時2X2=5,因?yàn)檫@對我們的財(cái)務(wù)大有好處。”實(shí)際上玻姆希望的滿足,將不僅從下面挖掉量子論的基礎(chǔ),并且也挖掉了玻姆解釋的基礎(chǔ)。當(dāng)然,同時也必須強(qiáng)調(diào)指出,剛才所說的類比,雖然十分恰當(dāng),但并不表示將來象玻姆所建議的那樣來改變量子論的論證,在邏輯上也是行不通的。因?yàn)檫@不是根本不可想象的,譬如說,未來數(shù)理邏輯的擴(kuò)展,可能給在特殊情況下2X2=5這樣的陳述以某種意義,并且這種擴(kuò)展了的數(shù)學(xué)甚至可能在經(jīng)濟(jì)領(lǐng)域的計(jì)算中得到應(yīng)用。然而,即使提不出令人信服的邏輯根據(jù),我們實(shí)際上仍相信,數(shù)學(xué)中這樣的變化在財(cái)務(wù)上對我們也毫無幫助。因此,很難理解,玻姆的著作所指出的那些可能實(shí)現(xiàn)他的希望的數(shù)學(xué)倡議如何能夠用來描述物理現(xiàn)象。
  •   呵呵,相當(dāng)好的書,可惜沒有來的急看了
 

250萬本中文圖書簡介、評論、評分,PDF格式免費(fèi)下載。 第一圖書網(wǎng) 手機(jī)版

京ICP備13047387號-7