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The field of Statistics is constantly challenged by the problems that science and industry brings to its door. In the
early days, these problems often came from agricultural and industrial experiments and were relatively small in
scope. With the advent of computers and the information age, statistical problems have exploded both in size and
complexity. Challenges in the areas of data storage, organization and searching have led to the new field of "data
mining"; statistical and computational problems in biology and medicine have created "bioinformatics." Vast
amounts of data are being generated in many fields, and the statistician's job is to make sense of it all: to extract
important patterns and trends, and understand "what the data says.” We call this learning from data. The challenges
in learning from data have led to a revolution in the statistical sciences. Since computation plays such a key role, it is
not surprising that much of this new development has been done by researchers in other fields such as computer
science and engineering.The learning problems that we consider can be roughly categorized as either supervised or
unsupervised. In supervised learning, the goal is to predict the value of an outcome measure based on a number of
input measures; in unsupervised learning, there is no outcome measure, and the goal is to describe the associations
and patterns among a set of input measures.
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