統(tǒng)計學(xué)習(xí)基礎(chǔ)

出版時間:2009-1  出版社:世界圖書出版公司  作者:哈斯蒂  頁數(shù):533  
Tag標(biāo)簽:無  

前言

The field of Statistics is constantly challenged by the problems that science and industry brings to its door. In the early days, these problems often came from agricultural and industrial experiments and were relatively small in scope. With the advent of computers and the information age, statistical problems have exploded both in size and complexity. Challenges in the areas of data storage, organization and searching have led to the new field of "data mining"; statistical and computational problems in biology and medicine have created "bioinformatics." Vast amounts of data are being generated in many fields, and the statistician's job is to make sense of it all: to extract important patterns and trends, and understand "what the data says." We call this learning from data.The challenges in learning from data have led to a revolution in the statistical sciences. Since computation plays such a key role, it is not surprising that much of this new development has been done by researchers in other fields such as computer science and engineering.The learning problems that we consider can be roughly categorized as either supervised or unsupervised. In supervised learning, the goal is to predict the value of an outcome measure based on a number of input measures; in unsupervised learning, there is no outcome measure, and the goal is to describe the associations and patterns among a set of input measures.

內(nèi)容概要

  The learning problems that we consider can be roughly categorized as either supervised or unsupervised. In supervised learning, the goal is to predict the value of an outcome measure based on a number of input measures; in unsupervised learning, there is no outcome measure, and the goal is to describe the associations and patterns among a set of input measures.

作者簡介

作者:(美國)哈斯蒂 (Hastie.T.)

書籍目錄

Preface1  Introduction Overview of Supervised Learning2.1  Introduction2.2  Variable Types and Terminology2.3  Two Simple Approaches to Prediction: Least Squares and Nearest Neighbors2.3.1  Linear Models and Least Squares2.3.2  Nearest-Neighbor Methods2.3.3  From Least Squares to Nearest Neighbors2.4  Statistical Decision Theory2.5  Local Methods in High Dimensions2.6  Statistical Models, Supervised Learning and Function Approximation2.6.1  A Statistical Model for the Joint Distribution Pr(X,Y)2.6.2  Supervised Learning2.6.3  Function Approximation2.7  Structured Regression Models2.7.1  Difficulty of the Problem2.8  Classes of Restricted Estimators2.8.1  Roughness Penalty and Bayesian Methods2.8.2  Kernel Methods and Local Regression2.8.3  Basis Functions and Dictionary Methods2.9  Model Selection and the Bias-Variance TradeoffBibliographic Notes  Exercises  3 Linear Methods for Regression3.1 Introduction3.2 Linear Regression Models and Least Squares  3.2.1  Example:Prostate Cancer3.2.2 The Ganss-Markov Theorem3.3 Multiple Regression from Simple Univariate Regression3.3.1  Multiple Outputs3.4  Subset Selection and Coefficient Shrinkage3.4.1  Subset Selection3.4.2 Prostate Cancer Data Example fContinued)3.4.3  Shrinkage Methods3.4.4  Methods Using Derived Input Directions3.4.5 Discussion:A Comparison of the Selection and Shrinkage Methods3.4.6  Multiple Outcome Shrinkage and Selection 3.5 Compntational ConsiderationsBibliographic NotesExercises  4 Linear Methods for Classification4.1 Introduction4.2 Linear Regression of an Indicator Matrix4.3 Linear Discriminant Analysis4.3.1  Regularized Discriminant Analysis4.3.2  Computations for LDA  4.3.3  Reduced-Rank Linear Discriminant Analysis  4.4 Logistic Regression4.4.1  Fitting Logistic Regression Models4.4.2  Example:South African Heart Disease4.4.3  Quadratic Approximations and Inference4.4.4 Logistic Regression or LDA74.5 Separating Hyper planes4.5.1  Rosenblatt's Perceptron Learning Algorithm4.5.2  Optimal Separating Hyper planesBibliographic NotesExercises  5 Basis Expansions and Regularizatlon5.1  Introduction5.2 Piecewise Polynomials and Splines5.2.1  Natural Cubic Splines5.2.2  Example: South African Heart Disease (Continued) 5.2.3  Example: Phoneme Recognition5.3  Filtering and Feature Extraction5.4  Smoothing Splines5.4.1  Degrees of Freedom and Smoother Matrices5.5  Automatic Selection of the Smoothing Parameters5.5.1  Fixing the Degrees of Freedom5.5.2  The Bias-Variance Tradeoff5.6  Nonparametric Logistic Regression5.7  Multidimensional Splines5.8  Regularization and Reproducing Kernel Hilbert Spaces . . 5.8.1  Spaces of Phnctions Generated by Kernels5.8.2  Examples of RKHS5.9  Wavelet Smoothing5.9.1  Wavelet Bases and the Wavelet Transform5.9.2  Adaptive Wavelet FilteringBibliographic NotesExercisesAppendix: Computational Considerations for SplinesAppendix: B-splinesAppendix: Computations for Smoothing Splines6  Kernel Methods6.1  One-Dimensional Kernel Smoothers6.1.1  Local Linear Regression6.1.2  Local Polynomial Regression6.2  Selecting the Width of the Kernel6.3  Local Regression in Jap6.4  Structured Local Regression Models in ]ap6.4.1  Structured Kernels6.4.2  Structured Regression Functions6.5  Local Likelihood and Other Models6.6  Kernel Density Estimation and Classification6.6.1  Kernel Density Estimation6.6.2  Kernel Density Classification6.6.3  The Naive Bayes Classifier6.7  Radial Basis Functions and Kernels6.8  Mixture Models for Density Estimation and Classification 6.9  Computational ConsiderationsBibliographic Notes Exercises7  Model Assessment and Selection7.1  Introduction7.2  Bias, Variance and Model Complexity7.3  The Bias-Variance Decomposition7.3.1  Example: Bias-Variance Tradeoff7.4  Optimism of the Training Error Rate7.5  Estimates of In-Sample Prediction Error7.6  The Effective Number of Parameters7.7  The Bayesian Approach and BIC7.8  Minimum Description Length7.9  Vapnik Chernovenkis Dimension7.9.1  Example (Continued)7.10 Cross-Validation7.11 Bootstrap Methods7.11.1 Example (Continued)Bibliographic NotesExercises8 Model Inference and Averaging8.1  Introduction8.2  The Bootstrap and Maximum Likelihood Methods8.2.1  A Smoothing Example8.2.2  Maximum Likelihood Inference8.2.3  Bootstrap versus Maximum Likelihood8.3  Bayesian Methods8.4  Relationship Between the Bootstrap and Bayesian Inference8.5  The EM Algorithm8.5.1  Two-Component Mixture Model8.5.2  The EM Algorithm in General8.5.3  EM as a Maximization-Maximization Procedure 8.6  MCMC for Sampling from the Posterior8.7  Bagging8.7.1  Example: Trees with Simulated Data8.8  Model Averaging and Stacking8.9  Stochastic Search: BumpingBibliographic NotesExercises9 Additive Models, Trees, and Related Methods9.1  Generalized Additive Models9.1.1  Fitting Additive Models9.1.2  Example: Additive Logistic Regression9.1.3  Summary9.2  Tree Based Methods 10 Boosting and Additive Trees11 Neural Networks12 Support Vector Machines and Flexible Discriminants13 Prototype Methods and Nearest-Neighbors14 Unsupervised LearningReferencesAuthor IndexIndex

章節(jié)摘錄

插圖:

編輯推薦

《統(tǒng)計學(xué)習(xí)基礎(chǔ)》由世界圖書出版公司出版。

圖書封面

圖書標(biāo)簽Tags

評論、評分、閱讀與下載


    統(tǒng)計學(xué)習(xí)基礎(chǔ) PDF格式下載


用戶評論 (總計32條)

 
 

  •   從網(wǎng)站給出的信息來看,這是第一版,但我有Emule下載的是第二版,第二版2008年出版,如果是這樣的話,世圖太差了,有新版本卻影印老版本。
  •   買回來才發(fā)現(xiàn),比較崩潰……
  •   雖然這是第一版的書,比第二版的少四章,但我沒找到第二版有賣的,所以即使是第一版還是很不錯的,不要以為出了第二版就完全否定第一版,買這本書的人誰把里面的內(nèi)容都掌握了才是最重要的
  •   這本書是我學(xué)習(xí)機(jī)器學(xué)習(xí)的入門書。書中基本上包含了大部分的機(jī)器學(xué)習(xí)算法。內(nèi)容翔實,數(shù)學(xué)證明充分。剛剛開始的時候讀起來有點難,讀久了就覺得這本書特別好,數(shù)學(xué)證明充分,基本功可以練的很扎實。有的時候,自己能安靜下來,認(rèn)真把一些書中沒有講到的證明慢慢寫出來,挺有收獲。
  •   書紙張質(zhì)量很差,而且每裝訂好。很容易就散開,脫頁。在亞馬遜買這么多東西,就這次最不滿意。以后買書要掂量下,還是去當(dāng)當(dāng)買比較好。
  •   書脊的裝訂對不起印刷的質(zhì)量,不敢用力壓書,生怕從中間斷開。書的內(nèi)容相當(dāng)不錯,和PRML比起來,沒有像后者一樣把所有的內(nèi)容都統(tǒng)一進(jìn)概率的框架里面去解釋。
  •   經(jīng)典必讀,無須多說!
  •   好評太多,忍不住就買了,挺不錯的,質(zhì)量很好
  •   居然是彩印的,書的內(nèi)容,手感都很好!
  •   翻譯的作品有時候能誤導(dǎo)讀者,所以對照著讀效果更好!
  •   印刷質(zhì)量不錯,不過書太厚了,好像我的就要從中間斷開了。其他都很不錯,是一本經(jīng)典的書。要是想看那些修正,從網(wǎng)站上也有。
  •   書質(zhì)量很好。內(nèi)容經(jīng)典,值得推薦
  •   雖然是第一版,彩色印刷還是很喜歡。
  •   質(zhì)量很不錯,插圖顏色很鮮明,書的氣息讓我想起了當(dāng)年讀英文原版的哈利波特
  •   印刷精美,不愧是經(jīng)典作品!
  •   送書的人態(tài)度比較差。。。特別捉雞
  •   一個很好的書
  •   統(tǒng)計學(xué)習(xí)基礎(chǔ)
  •   好東東,送貨快,價格公道。
  •   可以可以可以啊啊可以可以可
  •   中間開線了
  •     中文翻譯版大概是用google翻譯翻的,然后排版一下,就出版了。所以中文翻譯版中,每個單詞翻譯是對的,但一句話連起來卻怎么也看不懂。最佳閱讀方式是,看英文版,個別單詞不認(rèn)識的話,再看中文版對應(yīng)的那個詞。但如果英文版整個句子都不懂的話,那只有去借助baidu/google,并運用聯(lián)想、推理能力來自己理解了。
  •     個人覺得“機(jī)器學(xué)習(xí) -- 從入門到精通”可以作為這本書的副標(biāo)題。
      
      機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘或者模式識別領(lǐng)域有幾本非常流行的教材,比如Duda的模式分類,Bishop的PRML。Duda的書第一版是模式識別的奠基之作,現(xiàn)在大家談?wù)摰檬堑诙?,因為?nèi)容相對簡單,非常流行,但對近20年取得統(tǒng)治地位的SVM、Boosting基本沒提,有掛一漏萬之憾。PRML側(cè)重概率模型,體系詳備,是Bayesian方法的扛鼎之作。和PRML相比,這本Elements of Statistical Learning對當(dāng)前最為流行的方法有比較全面深入的介紹,對工程人員參考價值也許要更大一點。另一方面,它不僅總結(jié)了已經(jīng)成熟了的一些技術(shù),而且對尚在發(fā)展中的一些議題也有簡明扼要的論述。讓讀者充分體會到機(jī)器學(xué)習(xí)是一個仍然非?;钴S的研究領(lǐng)域,應(yīng)該會讓學(xué)術(shù)研究人員也有常讀常新的感受。
      
      這本書的作者是Boosting方法最活躍的幾個研究人員,發(fā)明的Gradient Boosting提出了理解Boosting方法的新角度,極大擴(kuò)展了Boosting方法的應(yīng)用范圍。書中Boosting部分是被相關(guān)學(xué)術(shù)論文引用最頻繁的部分。個人覺得經(jīng)常研讀一下作者和其他Boosting流派打嘴仗的文章是學(xué)習(xí)機(jī)器學(xué)習(xí)很好的一個途徑,因為只有這樣尚未成熟(而又影響廣泛)的領(lǐng)域中,你才能更具體地體會到一個學(xué)科是怎樣逐漸發(fā)展成熟的,那些貢獻(xiàn)卓著的研究人員是如何天才地發(fā)現(xiàn)問題解決問題的,又是如何因偏執(zhí)而終究會被證明有一方至少是部分地?zé)o知的。這種體會是很難在那些發(fā)展成熟了的分支中找到的。Regularization方法是作者貢獻(xiàn)豐富的另一個領(lǐng)域,也是這本書另一個最具趣味的部分。
      
      這本書第一版在2000年出版,現(xiàn)在評論的第二版是09年出版的,包含了很多值得玩味的新內(nèi)容。比如從Ensemble方法的角度來解釋MCMC方法的優(yōu)異性能,就是我以前沒有注意到的。當(dāng)然,也許只是因為我的知識范圍還不夠?qū)挕?br />   
      
      
  •     這本統(tǒng)計學(xué)習(xí)的書由斯坦福幾個響當(dāng)當(dāng)?shù)拇笈K鶎?,覆蓋面很廣且闡述的比較透徹,一些最新的(2008/2009)研究成果也收錄其中,能夠給讀者對統(tǒng)計學(xué)習(xí)領(lǐng)域一個全面、清晰的認(rèn)識。統(tǒng)計和生統(tǒng)行當(dāng)?shù)谋貍涞谰撸绻阕鲞@些行當(dāng),千萬別跟同行說不知道這本書。。。
  •   而且還缺了一些內(nèi)容?。。。。?!
  •   同感,可以當(dāng)字典查單詞,很多地方倒不如英文的來的明白啊
  •   說說我的感受
    全書大量使用Regularization Operator和Sampling,卻沒有high level的理論分析,實在意猶未盡
    另外對Non-Flatten數(shù)據(jù)的處理太少
  •   怎么我記得對Regularization從最大后驗和SVD兩個角度解釋了?是在別的書里看到的?
    Non-Flatten您是說manifold嗎?這個的確不是本書重點。
  •     Learning with Kernels談了Regularization Operator和RKHS的關(guān)系,范劍青等人討論了SCAD等其他Norm
      Regularization的解釋是加入一些常識性的問題理解吧,比如通常是光滑的、稀疏的之類,感覺和概率那套先驗后驗還是不大一樣
      我也沒有細(xì)看,隨便扯兩句啊 呵呵
      
      Non-Flatten就是Structural、Relational、Hierarchical之類的
  •   是啊,模型通常是光滑稀疏的,這是一個先驗知識啊,比如依據(jù)上面這個先驗知識令參數(shù)高斯分布,那么后驗就得到L2的Regularization。Learning with Kernels沒認(rèn)真看過。
  •   一看Regularization,總是讓我想起Tomaso Poggio
  •   "比如從Ensemble方法的角度來解釋MCMC方法的優(yōu)異性能"
    這是在哪個章節(jié)?
 

250萬本中文圖書簡介、評論、評分,PDF格式免費下載。 第一圖書網(wǎng) 手機(jī)版

京ICP備13047387號-7