黎曼幾何

出版時間:2008-5  出版社:世界圖書出版公司  作者:Manfredo Perdigao do Carmo  頁數(shù):300  
Tag標(biāo)簽:無  

內(nèi)容概要

The object of this book is to familiarize the reader with the basic language of and some fundamental theorems in Riemannian Geometry。To avoid referring to previous knowledge of differentiable manifolds, we include Chapter 0, which contains those concepts and results on differentiable manifolds which are used in an essential way in the rest of the book?! he first four chapters of the book present the basic concepts of Riemannian Geometry (Riemannian metrics, Riemannian connections, geodesics and curvature)。A good part of the study of Riemannian Geometry consists of understanding the relationship between geodesics and curvature。Jacobi fields, an essential tool for this understanding, are introduced in Chapter 5。In Chapter 6 we introduce the second fundamental form associated with an isometric immersion, and prove a generalization of the Theorem Egregium of Gauss。This allows us to relate the notion of curvature in Riemannian manifolds to the classical concept of Gaussian curvature for surfaces。

作者簡介

作者:(葡萄牙)卡莫(Carmo M.p.)

書籍目錄

Preface to the first editionPreface to the second edition Preface to the English edition How to use this book CHAPTER 0-DIFFERENTIABLE MANIFOLDS  1. Introduction  2. Differentiable manifolds;tangent space  3. Immersions and embeddings;examples  4. Other examples of manifolds,Orientation  5. Vector fields; brackets,Topology of manifolds CHAPTER 1-RIEMANNIAN METRICS  1. Introduction  2. Riemannian Metrics CHAPTER 2-AFFINE CONNECTIONS;RIEMANNIAN CONNECTIONS  1. Introduction  2. Affine connections  3. Riemannian connections CHAPTER 3-GEODESICS;CONVEX NEIGHBORHOODS  1.Introduction  2.The geodesic flow  3.Minimizing properties ofgeodesics  4.Convex neighborhoodsCHAPTER 4-CURVATURE    1.Introduction  2.Curvature  3.Sectional curvature  4.Ricci curvature and 8calar curvature  5.Tensors 0n Riemannian manifoidsCHAPTER 5-JACOBI FIELDS  1.Introduction  2.The Jacobi equation  3.Conjugate pointsCHAPTER 6-ISOMETRIC IMMERSl0NS    1.Introduction.  2.The second fundamental form  3.The fundarnental equationsCHAPTER 7-COMPLETE MANIFoLDS;HOPF-RINOW AND HADAMARD THEOREMS  1.Introduction.  2.Complete manifolds;Hopf-Rinow Theorem.  3.The Theorem of Hadamazd.CHAPTER 8-SPACES 0F CONSTANT CURVATURE  1.Introduction  2.Theorem of Cartan on the determination ofthe metric by mebns of the curvature.  3.Hyperbolic space  4.Space forms  5.Isometries ofthe hyperbolic space;Theorem ofLiouvilleCHAPTER 9一VARIATl0NS 0F ENERGY    1.Introduction.  2.Formulas for the first and second variations of enezgy  3.The theorems of Bonnet—Myers and of Synge-WeipJteinCHAPTER 10-THE RAUCH COMPARISON THEOREM    1.Introduction  2.Ttle Theorem of Rauch.  3.Applications of the Index Lemma to immersions  4.Focal points and an extension of Rauch’s TheoremCHAPTER 11—THE MORSE lNDEX THEOREM    1.Introduction  2.The Index TheoremCHAPTER 12-THE FUNDAMENTAL GROUP OF MANIFOLDS 0F NEGATIVE CURVATURE    1.Introduction  2.Existence of closed geodesicsCHAPTER 13-THE SPHERE THEOREMReferencesIndex

編輯推薦

《黎曼幾何》非常值得一讀。

圖書封面

圖書標(biāo)簽Tags

評論、評分、閱讀與下載


    黎曼幾何 PDF格式下載


用戶評論 (總計25條)

 
 

  •   這本書是doCamo教授的名著,他的另一本名著是《曲線和曲面的微分幾何》,已經(jīng)翻譯成了中文??上в⑽脑鏋?992年,近20年的研究沒有得到整理。
  •   幾何味道很濃,敘述生動,證明簡練,習(xí)題也很好。
  •   此乃廣義相對論兩大神器之一,是上乘武功秘籍,你值得擁有!
  •   都不錯相當(dāng)好
  •   一定要看的,作者太強(qiáng)了
  •   當(dāng)當(dāng)對書的保護(hù)還不錯。這本書比較小,沒什么問題。
  •   絕對的經(jīng)典好書!
  •   原版教材,很好的書
  •   要求有相當(dāng)?shù)臄?shù)學(xué)基礎(chǔ)
  •   經(jīng)典之作,值得收藏!印刷很清晰
  •   書皮比較臟,其他還好!
  •   內(nèi)容比較充實全面,易于理解。值得推薦。
  •   好書,快讀完了!題目還沒有做完!
  •   很好的書,經(jīng)典之作,不容錯過
  •   拿到時發(fā)現(xiàn)是影印版頓時=。=至于內(nèi)容還沒看
  •   內(nèi)容基本,是很好的入門教材
  •   很不錯呀!送貨也快。
  •   這本書應(yīng)該是微分幾何的經(jīng)典
  •   符號用的有些雜,覺得不太適合自學(xué)!
  •   這本書首先給出了微分流形的基礎(chǔ),其定義與一般的微分流形的定義不同,但卻是最自然的定義方式。其次,關(guān)于黎曼幾何的內(nèi)容,講解的非常細(xì)致,章節(jié)和條理非常清晰。書后的習(xí)題不多,卻極其精煉。作為黎曼幾何的入門書,是相當(dāng)好的。
  •   經(jīng)典中的經(jīng)典。強(qiáng)烈推薦。
  •   作者寫作思路非常清晰,在簡短的介紹了微分流形,矢量場等概念后很快就進(jìn)入黎曼幾何的主題了。
  •   內(nèi)容精簡易懂,講解教詳細(xì),印刷不好。
  •   黎曼幾何入門看這本書非常好,此書不像一般的黎曼幾何書一開始就充斥了許多張量分析的記號,內(nèi)容幾何直觀很強(qiáng),讓人能過很快理解到幾何的東西,尤其是大范圍黎曼幾何部分(從第七章起)內(nèi)容豐富精彩。閱讀本書只需要簡單的數(shù)學(xué)分析和線性代數(shù)知識。適合高中生和低年級本科生閱讀
  •   外觀不錯,英語不好是看不懂的,本身就難度大,就算懂英語也不一定看得懂
 

250萬本中文圖書簡介、評論、評分,PDF格式免費下載。 第一圖書網(wǎng) 手機(jī)版

京ICP備13047387號-7