黎曼幾何和幾何分析

出版時(shí)間:2008-3  出版社:世界圖書出版公司  作者:約斯特  頁數(shù):566  
Tag標(biāo)簽:無  

內(nèi)容概要

Riemannian geometry is characterized, and research is oriented towards and shaped by concepts (geodesics, connections, curvature, ...) and objectives, in particular to understand certain classes of (compact) Riemannian manifolds defined by curvature conditions (constant or positive or negative curvature, ...). By way of contrast, geometric analysis is a perhaps somewhat less systematic collection of techniques, for solving extremal problems naturally arising in geometry and for investigating and characterizing their solutions. It turns out that the two fields complement each other very well; geometric analysis offers tools for solving difficult problems in geometry, and Riemannian geometry stimulates progress in geometric analysis by setting ambitious goals.   It is the aim of this book to be a systematic and comprehensive introduction to Riemannian geometry and a representative introduction to the methods of geometric analysis. It attempts a synthesis of geometric and analytic methods in the study of Riemannian manifolds.

作者簡介

作者:(德國)約斯特

書籍目錄

1.  Foundational Material 1.1  Manifolds and Differentiable Manifolds 1.2  Tangent Spaces 1.3  Submanifolds 1.4  Riemannian Metrics 1.5  Vector Bundles 1.6  Integral Curves of Vector Fields. Lie Algebras 1.7  Lie Groups 1.8  Spin Structures Exercises for Chapter 12. De Rham Cohomology and Harmonic Differential Forms 2.1  The Laplace Operator 2.2  Representing Co homology Classes by Harmonic Forms 2.3  Generalizations Exercises for Chapter 23.  Parallel Transport, Connections, and Covariant Derivatives 3.1  Connections in Vector Bundles 3.2  Metric Connections. The Yang-Mills Functional 3.3  The Levi-Civita Connection 3.4  Connections for Spin Structures and the Dirac Operator .. 3.5  The Bochner Method 3.6  The Geometry of Submanifolds. Minimal Submanifolds ... Exercises for Chapter 34. Geodesics and Jacobi Fields 4.1  1st and 2nd Variation of Arc Length and Energy 4.2  Jacobi Fields 4.3  Conjugate Points and Distance Minimizing Geodesics  ... 4.4  Riemannian Manifolds of Constant Curvature 4.5  The Rauch Comparison Theorems and Other Jacobi Field Estimates 4.6  Geometric Applications of Jacobi Field Estimates 4.7  Approximate Fundamental Solutions and Representation Formulae   4.8  The Geometry of Manifolds of Nonpositive Sectional Curvature  Exercises for Chapter 4 A Short Survey on Curvature and Topology5.  Symmetric Spaces and Kahler Manifolds 5.1  Complex Projective Space 5.2  Kahler Manifolds 5.3  The Geometry of Symmetric Spaces 5.4  Some Results about the Structure of Symmetric Spaces .. 5.5 The Space SI(n,R)/SO(n,R)   5.6  Symmetric Spaces of Noncompact Type as Examples of Nonpositively Curved Riemannian Manifolds    Exercises for Chapter 56.  Morse Theory and Floer Homology 6.1  Preliminaries: Aims of Morse Theory 6.2  Compactness: The Palais-Smale Condition and the Existence of Saddle Points   6.3  Local Analysis: Nondegeneracy of Critical Points, Morse Lemma, Stable and Unstable Manifolds 6.4  Limits of Trajectories of the Gradient Flow 6.5  The Morse-Smale-Floer Condition: Transversality and Z2-Cohomology 6.6  Orientations and Z-homology 6.7  Homotopies   6.8  Graph flows 6.9  Orientations 6.10 The Morse Inequalities 6.11 The Palais-Smale Condition and the Existence of Closed Geodesics  Exercises for Chapter 67.  Variational Problems from Quantum Field Theory .. 7.1  The Ginzburg-Landau Functional 7.2  The Seiberg-Witten Functional Exercises for Chapter 78. Harmonic MapsAppendixBibliographyIndex

編輯推薦

《黎曼幾何和幾何分析(第4版)》由世界圖書出版公司出版。

圖書封面

圖書標(biāo)簽Tags

評(píng)論、評(píng)分、閱讀與下載


    黎曼幾何和幾何分析 PDF格式下載


用戶評(píng)論 (總計(jì)10條)

 
 

  •   此書出了第6版,2011年的,不過讀讀第四版也不錯(cuò),起碼此書非常適合初學(xué)幾何分析,雖然還是比較難,相對(duì)地還是比其他同類幾何分析書要簡單多了!
  •   德國人寫的書普遍不錯(cuò)
  •   準(zhǔn)備潛心研讀一番。
  •   電子版的不如圖書館借的,圖書館借的不如復(fù)印的,復(fù)印的不如自己買的。
  •   書寫的簡潔清晰。推薦。
  •   比第三版多了一點(diǎn),很不錯(cuò)
  •   黎曼幾何和幾何分析是非常重要的領(lǐng)域此書較易讀懂
  •   書是不錯(cuò),但太專業(yè),一般人是不會(huì)讀也讀不懂的
  •   以前大致翻了一下此書,畢業(yè)買了一本贈(zèng)給學(xué)幾何的兄弟,他說很不錯(cuò)。
  •   暫時(shí)沒有看太多,就不具體評(píng)論了
 

250萬本中文圖書簡介、評(píng)論、評(píng)分,PDF格式免費(fèi)下載。 第一圖書網(wǎng) 手機(jī)版

京ICP備13047387號(hào)-7