圖論

出版時(shí)間:2008-3  出版社:世界圖書出版公司  作者:迪斯特爾  頁(yè)數(shù):410  
Tag標(biāo)簽:無(wú)  

內(nèi)容概要

Almost two decades have passed since the appearance of those graph theory texts that still set the agenda for most introductory courses taught today. The canon created by those books has helped to identify some main fields of study and research, and will doubtless continue to influence the development of the discipline for some time to come.   Yet much has happened in those 20 years, in graph theory no less than elsewhere: deep new theorems have been found, seemingly disparate methods and results have become interrelated, entire new branches have arisen. To name just a few such developments, one may think of how the new notion of list colouring has bridged the gulf between invuriants such as average degree and chromatic number, how probabilistic methods and the regularity lemma have pervaded extremai graph theory and Ramsey theory, or how the entirely new field of graph minors and tree-decompositions has brought standard methods of surface topology to bear on long-standing algorithmic graph problems.

書籍目錄

Preface 1 The Basics  1.1 Graphs 1.2 The degree of a vertex 1.3 Paths and cycles 1.4 Connectivity 1.5 Trees and forests 1.6 Bipartite graphs 1.7 Contraction and minors 1.8 Euler tours 1.9 Some linear algebra  1.10 Other notions of graphs  Exercises  Notes 2 Matching, Covering and Packing  2.1 Matching in bipartite graphs 2.2 Matching in general graphs 2.3 Packing and covering  2.4 Tree-packing and arboricity   2.5 Path covers Exercises  Notes 3 Connectivity   3.1 2-Connected graphs and subgraphs..   3.2 The structure of 3-connected graphs   3.3 Menger's theorem   3.4 Mader's theorem   3.5 Linking pairs of vertices  Exercises  Notes4 Planar Graphs   4.1 Topological prerequisites   4.2 Plane graphs   4.3 Drawings   4.4 Planar graphs: Kuratowski's theorem.   4.5 Algebraic planarity criteria   4.6 Plane duality  Exercises  Notes5 Colouring   5.1 Colouring maps and planar graphs   5.2 Colouring vertices   5.3 Colouring edges   5.4 List colouring   5.5 Perfect graphs  Exercises  Notes6 Flows  6.1 Circulations  6.2 Flows in networks  6.3 Group-valued flows  6.4 k-Flows for small k  6.5 Flow-colouring duality  6.6 Tutte's flow conjectures  Exercises  Notes7 Extremal Graph Theory8 Infinite Graphs9 Ramsey Theory for Graphs10 Hamilton Cycles11 Random Grapnhs12 Mionors Trees and WQO

圖書封面

圖書標(biāo)簽Tags

無(wú)

評(píng)論、評(píng)分、閱讀與下載


    圖論 PDF格式下載


用戶評(píng)論 (總計(jì)17條)

 
 

  •   圖論方面還算是不錯(cuò)的一本書
  •   圖論的相關(guān)內(nèi)容,正好是我所需要的。
  •   書的內(nèi)容很豐富,我上次都在當(dāng)當(dāng)上買了一本,同學(xué)見(jiàn)了也要我?guī)退I,現(xiàn)在這是第二本了。原版外文書籍,學(xué)習(xí)圖論和組合的真的這值得擁有一本。我強(qiáng)烈推薦!
  •   英文原版,好好讀讀
  •   這本書還不錯(cuò),適合初學(xué)者
  •   老師推薦的教材,內(nèi)容很詳細(xì),紙質(zhì)也不錯(cuò),值得購(gòu)買!
  •   還不錯(cuò) 沒(méi)開始看
  •   這本書內(nèi)容相對(duì)有點(diǎn)難度,不過(guò)內(nèi)容十分全面!
  •   上架平裝書能否也封一下?到手時(shí)灰得很。
  •   很好的本書,
  •   內(nèi)容很詳細(xì),對(duì)有這方面的需要的人有很大幫助
  •   感覺(jué)還挺不錯(cuò)的,讀起來(lái)有意思!
  •   呵呵,還以為是中文版呢,買來(lái)研究一下
  •   內(nèi)容詳實(shí), 不錯(cuò)
  •   書不錯(cuò),但貌似我買錯(cuò)了,我想買的是bolabase(不知道有沒(méi)有寫錯(cuò)名字)。
  •   大概瀏覽了一下,還不錯(cuò),就是有點(diǎn)舊和褶皺
  •   挺扎實(shí)的一本書,寫論文的時(shí)候能起到很好的參考作用。
 

250萬(wàn)本中文圖書簡(jiǎn)介、評(píng)論、評(píng)分,PDF格式免費(fèi)下載。 第一圖書網(wǎng) 手機(jī)版

京ICP備13047387號(hào)-7