幾何測度論

出版時(shí)間:2004-11  出版社:世界圖書出版公司  作者:Herbert Federer  頁數(shù):676  
Tag標(biāo)簽:無  

內(nèi)容概要

This book aims to fill the need for a comprehensive treatise on geo-metric measure theory. It contains a detailed exposition leading from the foundations of the theory to the most recent discoveries, including many results not previously published. It is intended both as a reference book for mature mathematicians and as a textbook for able students. The material of Chapter 2 can be covered in a first year graduate course on real analysis. Study of the later chapters is suitable preparation for re-search. Some knowledge of elementary set theory, topology, linear algebra and commutative ring theory is prerequisite for reading this book, but the treatment is selfcontained with regard to all those topics in multilinear algebra, analysis, differential geometry and algebraic topology which occur.

作者簡介

Herbert Federer was born on July 23, 1920, in Vienna. After emigrating to the US in 1938, he studied mathematics and physics at the University of California, Berkeley. Affiliated to Brown University, Providence since 1945, he is now Professor Emeritus there.
The major part of Professor Federer's scientific effort has been directed to the development of the subject of Geometric Measure Theory, with its roots and applications in classical geometry and analysis, yet in the functorial spirit of modern topology and algebra. His work includes more than thirty research papers published between 1943 and 1986, as well as this book.

書籍目錄

IntroductionCHAPTER ONE  Grassmann algebra 1.1. Tensor products 1.2. Graded algebras 1.3. The exterior algebra of a vectorspace 1.4. Alternating forms and duality 1.5. Interior multiplications 1.6. Simple m-vectors 1.7. Inner products 1.8. Mass and comass 1.9. The symmetric algebra of a vectorspace 1.10. Symmetric forms and polynomial functionsCHAPTER TWO   General measure theory 2.1. Measures and measurable sets  2.1.1. Numerical summation  2.1.2.-3. Measurable sets  2.1.4.-5. Measure hulls  2.1.6. Ulam numbers 2.2. Borel and Suslin sets  2.2.1. Borel families  2.2.2. -3. Approximation lay closed subsets  2.2.4. -5. Nonmeasurable sets  2.2.5. Radon measures  2.2.6. The space of sequences of positive integers  2.2.7. -9. Lipschitzian maps  2.2.10.-13. Suslin sets  2.2.14.-15. Borel and Baire functions  2.2.16. Separability of supports  2.2.17. Images of Radon measures 2.3 Measurable functions  2.3.1.-2. Basic properties  2.3.3.-7. Approximation theorems  2.3.8.-10. Spaces of measurable functions 2.4. Lebesgue integration  2.4.1.-5. Basic properties  2.4.6.-9. Limit theorems  2.4.10.-11. Integrals over subsets  2.4.12.-17. Lebesgue spaces  2.4.18. Compositions and image measures  2.4.19. Jensen''s inequality 2.5. Linear functionals  2.5.1. Lattices of functions  2.5.2.-6. Daniell integrals  2.5.7.-12. Linear functionals on Lebesgue spaces  2.5.13.-15. Riesz''s representation theorem  2.5.16. Curve length  ……CHAPTER THREE  RectifiabilityCHAPTER FOUR  Homological integration theoryCHAPTER FIVE  Applications to the calculus of variationsBibliographyGlossary of some standrd notationsList of basic notations defined in the textIndex

圖書封面

圖書標(biāo)簽Tags

評論、評分、閱讀與下載


    幾何測度論 PDF格式下載


用戶評論 (總計(jì)4條)

 
 

  •   內(nèi)容豐富,可以當(dāng)字典收藏
  •   相當(dāng)經(jīng)典的教材,現(xiàn)在正在讀呢!
  •   怎一個(gè)難字了得
  •   看吧!學(xué)吧!學(xué)完就成仙了!
 

250萬本中文圖書簡介、評論、評分,PDF格式免費(fèi)下載。 第一圖書網(wǎng) 手機(jī)版

京ICP備13047387號-7