出版時間:2003-11 出版社:北京世界圖書出版公司 作者:John M.Lee 頁數(shù):224
Tag標簽:無
內(nèi)容概要
This book is designed as a textbook for a one-quarter or one-semester graduate course on Riemannian geometry, for students who are familiar with topological and differentiable manifolds. It focuses on developing an intimate acquaintance with the geometric meaning of curvature. In so doing, it introduces and demonstrates the uses of all the main technical tools needed for a careful study of Riemannian manifolds.
書籍目錄
Preface 1 What Is Curvature? The Euclidean Plane Surfaces in Space Curvature in Higher Dimensions 2 Review of Tensors, Manifolds, and Vector Bundles Tensors on a Vector Space Manifolds Vector Bundles Tensor Bundles and Tensor Fields 3 Definitions and Examples of Riemannian Metrics Riemannian Metrics Elementary Constructions Associated with Riemannian Metrics Generalizations of Riemannian Metrics The Model Spaces of Riemannian Geometry Problems 4 Connections The Problem of Differentiating Vector Fields Connections Vector Fields Along Curves ……5 Riemannian Geodeics6 Geodesis and Distance7 Curvature8 Riemannian Submanifolds9 The Gauss-Bonnet Theorem10 Jacobi Fields11 Cuvature and TopologyReferencesIndex
圖書封面
圖書標簽Tags
無
評論、評分、閱讀與下載