過(guò)程設(shè)計(jì)原理

出版時(shí)間:2002-8  出版社:化學(xué)工業(yè)出版社  作者:塞德  頁(yè)數(shù):824  

前言

  隨著中國(guó)社會(huì)主義現(xiàn)代化建設(shè)進(jìn)入新的階段,以高質(zhì)量的高等教育培養(yǎng)千百萬(wàn)專(zhuān)門(mén)人才,迎接新世紀(jì)的挑戰(zhàn),是實(shí)現(xiàn)“科教興國(guó)”戰(zhàn)略的基礎(chǔ)工程,也是完成“十五”計(jì)劃各項(xiàng)奮斗目標(biāo)的重要保證。為切實(shí)加強(qiáng)高等學(xué)校本科教學(xué)并提高教學(xué)質(zhì)量,教育部于2001年專(zhuān)門(mén)下發(fā)文件提出12條意見(jiàn),對(duì)高等學(xué)校教學(xué)工作從認(rèn)識(shí)、管理、教師隊(duì)伍到教學(xué)方法和教學(xué)手段等給予指導(dǎo)。文件強(qiáng)調(diào),按照“教育要面向現(xiàn)代化、面向世界、面向未來(lái)”的要求,為適應(yīng)經(jīng)濟(jì)全球化和科技國(guó)際化的挑戰(zhàn),本科教育要?jiǎng)?chuàng)造條件使用英語(yǔ)等外語(yǔ)進(jìn)行公共課和專(zhuān)業(yè)課教學(xué)?! ≡谖募裰笇?dǎo)下,全國(guó)普通高等學(xué)校尤其是重點(diǎn)高校中興起了使用國(guó)外教材開(kāi)展教學(xué)活動(dòng)的潮流。如生物技術(shù)與工程、環(huán)境科學(xué)與工程、材料科學(xué)與工程及作為其學(xué)科基礎(chǔ)理論重要組成部分的化學(xué)技術(shù)和化學(xué)工程技術(shù)又是這股潮流中最為活躍的領(lǐng)域之一。在教育部“化工類(lèi)專(zhuān)業(yè)人才培養(yǎng)方案及教學(xué)內(nèi)容體系改革的研究與實(shí)踐”項(xiàng)目組及“化工類(lèi)專(zhuān)業(yè)創(chuàng)新人才培養(yǎng)模式、教學(xué)內(nèi)容、教學(xué)方法和教學(xué)技術(shù)改革的研究與實(shí)踐”項(xiàng)目組和“全國(guó)本科化學(xué)工程與工藝專(zhuān)業(yè)教學(xué)指導(dǎo)委員會(huì)”的指導(dǎo)和支持下,化學(xué)工業(yè)出版社及時(shí)啟動(dòng)了引進(jìn)國(guó)外名校名著的教材工程?! 〕霭嫔缃M織編輯人員多次赴國(guó)外學(xué)習(xí)考察,通過(guò)國(guó)外出版研究機(jī)構(gòu)對(duì)國(guó)外著名的高等學(xué)校進(jìn)行調(diào)查研究,搜集了一大批國(guó)際知名院校的現(xiàn)用教材選題。他們還聯(lián)絡(luò)國(guó)內(nèi)重點(diǎn)高校的專(zhuān)家學(xué)者組建了“國(guó)外名校名著評(píng)價(jià)委員會(huì)”,對(duì)國(guó)外和國(guó)內(nèi)高等本科教學(xué)進(jìn)行比較研究,對(duì)教材內(nèi)容質(zhì)量進(jìn)行審查評(píng)議,然后決定是否引進(jìn)。他們與國(guó)外許多著名的出版機(jī)構(gòu)建立了聯(lián)系,有的還建立了長(zhǎng)期合作關(guān)系,以掌握世界范圍內(nèi)優(yōu)秀教材的出版動(dòng)態(tài)?! ∫云浠瘜W(xué)化工專(zhuān)業(yè)領(lǐng)域的優(yōu)勢(shì)資源為基礎(chǔ),化學(xué)工業(yè)出版社的教材引進(jìn)主要涉及化學(xué)、化學(xué)工程與工藝、環(huán)境科學(xué)與工程、生物技術(shù)與工程、材料科學(xué)與工程、制藥工程等專(zhuān)業(yè),對(duì)過(guò)程裝備與控制工程、自動(dòng)化等傳統(tǒng)專(zhuān)業(yè)教材的引進(jìn)也在規(guī)劃之中?! ∷麄?cè)谟坝?、翻譯出版國(guó)外教材的過(guò)程中,注意學(xué)習(xí)國(guó)外教材出版的經(jīng)驗(yàn),提高編輯素質(zhì),密切編讀聯(lián)系,整合課程體系,更新教材內(nèi)容,科學(xué)設(shè)計(jì)版面,提高印裝質(zhì)量,更好地為教育服務(wù)?! ≡诨ぐ妗皣?guó)外名校名著”系列教材即將問(wèn)世之際,我們不僅感謝化學(xué)工業(yè)出版社為高等教育所做的努力,更應(yīng)贊賞他們嚴(yán)謹(jǐn)認(rèn)真的工作作風(fēng)。

內(nèi)容概要

  在文件精神指導(dǎo)下,全國(guó)普通高等學(xué)校尤其是重點(diǎn)高校中興起了使用國(guó)外教材開(kāi)展教學(xué)活動(dòng)的潮流。如生物技術(shù)與工程、環(huán)境科學(xué)與工程、材料科學(xué)與工程及作為其學(xué)科基礎(chǔ)理論重要組成部分的化學(xué)技術(shù)和化學(xué)工程技術(shù)又是這股潮流中最為活躍的領(lǐng)域之一。在教育部“化工類(lèi)專(zhuān)業(yè)人才培養(yǎng)方案及教學(xué)內(nèi)容體系改革的研究與實(shí)踐”項(xiàng)目組及“化工類(lèi)專(zhuān)業(yè)創(chuàng)新人才培養(yǎng)模式、教學(xué)內(nèi)容、教學(xué)方法和教學(xué)技術(shù)改革的研究與實(shí)踐”項(xiàng)目組和“全國(guó)本科化學(xué)工程與工藝專(zhuān)業(yè)教學(xué)指導(dǎo)委員會(huì)”的指導(dǎo)和支持下,化學(xué)工業(yè)出版社及時(shí)啟動(dòng)了引進(jìn)國(guó)外名校名著的教材工程。

書(shū)籍目錄

Part one Process invention-heuristics and analysis1.TheDesignProcess31.0Objectives31.1PrimitiveDesignProblems3TypicalPrimitiveDesignProblem5ProcessDesignTeam5IndustrialConsultants51.2StepsinDesigningandRetrofittingChemicalProcesses6AssessPrimitiveProblem6SurveyLiterature8ProcessCreation10DevelopmentofBaseCase10DetailedProcessSynthesisUsingAlgorithmicMethods11PlantwideControllabilityAssessment11DetailedDesign,EquipmentSizingandCostEstimation,ProfitabilityAnalysis,andOptimization12WrittenProcessDesignReportandOralPresentation12FinalDesign,Construction,Start-up,andOperation12Summary131.3EnvironmentalProtection13EnvironmentalIssues13EnvironmentalFactorsinProcessDesign15EnvironmentalDesignProblems181.4SafetyConsiderations19SafetyIssues19DesignApproachesTowardSafeChemicalPlants221.5EngineeringEthics231.6RoleofComputers27Spreadsheets28MathematicalPackages28ProcessSimulators28ComputationalGuidelines301.7Summary30References312.ProcessCreation322.0Objectives322.1Introduction322.2PreliminaryDatabaseCreation32ThermophysicalPropertyData33EnvironmentalandSafetyData37ChemicalPrices37Summary382.3Experiments382.4PreliminaryProcessSynthesis38ContinuousorBatchProcessing39ChemicalState41ProcessOperations42SynthesisSteps44ExampleofProcessSynthesis:ManufactureofVinylChloride45SynthesisTree56Heuristics56AlgorithmicMethods572.5DevelopmentoftheBase-CaseDesign57DetailedProcessFlowsheet57ProcessIntegration60DetailedDatabase60Pilot-PlantTesting61ProcessSimulation622.6Summary62References62Exercises633.SimulationtoAssistinProcessCreation643.0Objectives643.1Introduction653.2PrinciplesofFlowsheetSimulation66ProcessandSimulationFlowsheets66UnitSubroutines77CalculationOrder79Recycle79RecycleConvergenceMethods87FlashwithRecycleProblem89DegreesofFreedom90ControlBlocksTDesignSpecifications91FlashVesselControl94BidirectionalInformationFlow(HYSYS)943.3SynthesisoftheTolueneHydrodealkylationProcess98ProcessSimulation1013.4SimulationoftheMonochlorobenzeneSeparationProcess104UseofProcessSimulators1053.5Summary106References107Exercises1074.HeuristicsforProcessSynthesis1124.0Objectives1124.1Introduction1134.2RawMaterialsandChemicalReactions1144.3DistributionofChemicals116InertSpecies117PurgeStreams119RecycletoExtinction122Selectivity123ReactiveSeparations1254.4Separations1264.5HeatRemovalfromandAdditiontoReactors128HeatRemovalfromExothermicReactors128HeatAdditiontoEndothermicReactors1314.6PumpingandCompression1324.7Summary134References134Exercises135PartTwoDETAILEDPROCESSSYNTHESIS-ALGORITHMICMETHODS5.SynthesisofSeparationTrains1415.0Objectives1415.1Introduction1415.2CriteriaforSelectionofSeparationMethods1455.3SelectionofEquipment1485.4SequencingofOrdinaryDistillationColumns1505.5SequencingofGeneralVapor-LiquidSeparationProcesses1565.6SequencingofAzeotropicDistillationColumns170AzeotropyandPolyazeotropy170ResidueCurves175DistillationTowers178SeparationTrainSynthesis1885.7SeparationSystemsforGasMixtures194MembraneSeparationbyGasPermeation197Adsorption197Absorption198PartialCondensationandCryogenicDistillation1995.8SeparationSequencingforSolid-FluidSystems1995.9Summary201References201Exercises2026.SecondLawAnalysis2076.0Objectives2076.1Introduction2076.2TheSystemandtheSurroundings2106.3EnergyTransfer2126.4ThermodynamicProperties2136.5EquationsforSecondLawAnalysis2156.6ExamplesofLost-WorkCalculations2196.7ThermodynamicEfficiency2226.8CausesofLostWork2236.9ThreeExamplesofSecondLawAnalysis2246.10Summary237References237Exercises2387.HeatandPowerIntegration2437.0Objectives2437.1Introduction244HeatIntegrationSoftware2477.2MinimizingUtilitiesinHeatIntegration247Temperature-IntervalMethod248UsingGraphicalDisplays251LinearProgrammingMethod2547.3StreamMatchingatMinimumUtilities256StreamMatchingatthePinch256StreamMatchingUsingaMixed-IntegerLinearProgram2637.4MinimumNumberofHeatExchangers--BreakingHeatLoops2677.5OptimumApproachTemperature2717.6SuperstructuresforMinimizationofAnnualizedCost2747.7Heat-IntegratedDistillationTrains279EffectofPressureonHeatIntegration279Multiple-EffectDistillation281HeatPumping,VaporReeompression,andReboilerFlashing284SuperstructuresforMinimizationofAnnualizedCost2847.8HeatEnginesandHeatPumps286PositioningHeatEnginesandHeatPumps289OptimalDesign2927.9Summary295References295Exercises296Partthree detailed design,equipment sizing,economics ,and optimization8.HeatExchangerDesign3038.0Objectives3038.1Introduction303HeatDuty303HeatTransferMedia305Temperature-DrivingForceforHeatTransfer308PressureDrop3128.2EquipmentforHeatExchange312Double-PipeHeatExchangers312Shell-and-TubeHeatExchangers314Air-CooledHeatExchangers319CompactHeatExchangers320Temperature-DrivingForcesinShell-and-TubeHeatExchangers3218.3HeatTransferCoefficientsandPressureDrop326EstimationofOverallHeatTransferCoefficients327EstimationofIndividualHeatTransferCoefficientsandFrictionalPressureDrop327TurbulentFlowinStraight,SmoothDucts,Pipes,andTubesofCircularCrossSection329TurbulentFlowintheAnnularRegionBetweenStraight,Smooth,ConcentricPipesofCircularCrossSection331TurbulentFlowontheShellSideofShell-and-TubeHeatExchangers331HeatTransferCoefficientsforLaminar-Flow,Condensation,Boiling,andCompactHeatExchangers3328.4DesignofShell-and-TubeHeatExchangers3338.5Summary335References335Exercises3369.CapitalCostEstimation3389.0Objectives3389.1Introduction3389.2CostCharts339CostIndices342InstallationCosts342MaterialsandPressureConsiderations344EquipmentSizes344OtherInvestmentCosts345LangFactorMethod3489.3Equations348HeatExchangers348CylindricalProcessVessels349Trays349BlowersandCompressors3499.4ASPENPLUS351ProjectDates353EquipmentLists353EquipmentSizeandCostSpecifications356RemainingInvestmentCosts361CostIndices363Results3649.5DetailedCostEstimation3689.6Summary369References369Exercises37010.ProfitabilityAnalysis37410.0Objectives37410.1Introduction37410.2CostSheet37510.3TotalCapitalInvestmentandApproximateProfitabilityMeasures378WorkingCapital378ApproximateProfitabilityMeasures37810.4TimeValueofMoney384CompoundInterest384Annuities386ComparisonofEquipmentPurchases38810.5CashFlow391Depreciation392ProfitabilityMeasures393NetPresentValue393InvestorsRateofReturn39410.6ASPENPLUS396CostSheet396WorkingCapital401ProfitabilityMeasures401Results40410.7DetailedCostEstimation40810.8Summary408References409Exercises40911.OptimizationofProcessFlowsheets41611.0Objectives41611.1Introduction41611.2NonlinearProgram417ObjectiveFunction417EqualityConstraints418InequalityConstraints418GeneralFormulation41911.3OptimizationAlgorithm419RepeatedSimulation421InfeasiblePathApproach421CompromiseApproach422PracticalAspectsofFlowsheetOptimization42211.4FlowsheetOptimizations--CaseStudies42311.5ASPENPLUS425EnteringtheNLP425AdjustingtheSimulationFlowsheet42611.6Summary433References433Exercises433PartFourPLANTWIDECONTROLLABILITYASSESSMENT12.InteractionofProcessDesignandProcessControl43912.0Objectives43912.1Introduction43912.2ControlSystemConfiguration444ClassificationofProcessVariables444Degrees-of-FreedomAnalysis44612.3QualitativePlantwideControlSystemSynthesis44912.4Summary454References456Exercises45613.FlowsheetControllabilityAnalysis45713.0Objectives45713.1QuantitativeMeasuresforControllabilityandResiliency458Relative-GainArray(RGA)459DisturbanceCostandDisturbanceConditionNumber46713.2TowardAutomatedFlowsheetC&RDiagnosis471Short-CutC&RDiagnosis471GeneratingLow-OrderDynamicModels472Tutorial:C&RAnalysisforHeat-IntegratedDistillationColumns47413.3CaseStudies48013.4MATLABforC&RAnalysis49313.5Summary496References496Exercises49714.DynamicSimulationofProcessFlowsheets50014.0Objectives50014.1FundamentalConceptsinDynamicSimulation50014.2DynamicSimulationUsingHYSYS50114.3Control-LoopDefinition50214.4ControllerTuningMethods504On-LinePIControllerTuning504Model-BasedPIControllerTuning50514.5TutorialExercise:ControlofaBinaryDistillationColumn50914.6CaseStudies52214.7Summary532References532Exercises532PartFiveDESIGNREPORT15.WrittenProcessDesignReportandOralPresentation-53715.0Objectives53715.1WrittenReport538SectionsoftheReport538PreparationoftheWrittenReport543PageFormat544SampleDesignReports54515.2OralDesignPresentation546TypicalPresentation546MediaforthePresentation546RehearsingthePresentation547WrittenHandout547EvaluationoftheOralPresentation547Videotapes54915.3AwardCompetition54915.4Summary549References549APPENDIXESI.ASPENPLUSinProcessDesign551A-I.1ASPENPLUSInputForms551A-I.2DrawinganASPENPLUSFlowsheet553A-I.3ASPENPLUSParagraphs553A-I.4NestedRecycleLoops554A-I.5DesignSpecifications557A-I.6InlineFORTRAN559A-I.7CaseStudy:MonochlorobenzeneSeparationProcess565ASPENPLUSSimulationFlowsheetandInput565InterpretationofProgramOutput565II.HYSYSinProcessDesign581A-II.1TheHYSYSModelingEnvironment581A-II.2Steady-StateSimulation584AcyclicProcesses584ProcessesInvolvingRecycle605Subflowsheets609MultistageSeparationUsingtheColumnSubflowsheet609Optimization618A-II.3CaseStudy627References629I.PhaseEquilibriaandProcessUnitModels630A-III.1PhaseEquilibria630A-III.2FlashVessels630A-III.3Pumps642A-III.4CompressorsandExpanders644A-III.5HeatExchangers646HeatRequirementModels647Shell-and-TubeHeatExchangers647A-III.6ChemicalReactors651StoichiometricReactorModels652EquilibriumReactorModels654KineticReactorModels655A-III.7Separators666Split-Fraction(BlackBox)Models667Distillation:Fenske(Winn)-Underwood-GillilandShortcutDesign667Distillation:EdmisterApproximateGroupMethod672Distillation:RigorousSimulationUsingtheUnabridgedMESHEquations673References679IV.PhysicalPropertyEstimation,SolidsHandling,andElectrolytes680A-IV.1PhysicalPropertyEstimation680DataBanks680PropertyEstimation681ASPENPLUS686EstimatingParametersforPureSpecies690SelectionofPropertyEstimationMethodsandPropertyDataRegression692A-IV.2NonconventionalComponentsandSubstreams698Substreams700StreamClasses702A-IV.3SolidsHandling703A-IV.4Electrolytes709ChemicalandPhaseEquilibrium709ElectrolytesinProcessSimulators716References720V.ResidueCurvesforHeterogeneousSystems722VI.SuccessiveQuadraticProgramming723A-VI.1NLPandStationarityConditions723A-VI.2SolutionoftheStationarityEquations724References725VII.GeneralAlgebraicModelingSystems(GAMS)726A-VII.1InputFile727Statements728A-VII.2ExpandedFeatures:Documentation,VariableRedeclaration,andDisplay730A-VII.3ExpandedFeatures:Sets,Tables,ParametersandScalars,andEquationGrouping734A-VII.4Debugging737References739VIII.DesignProblemStatements740A-VIII.0ContentsandIntroduction740A-VIII.1Petrochemicals742A-VIII.2PetroleumProducts748A-VIII.3GasManufacture749A-VIII.4Foods752A-VIII.5Pharmaceuticals754A-VIII.6Polymers755A-VIII.7Environmental--AirQuality758A-VIII.8Environmental--WaterTreatment767A-VIII.9Environmental--SoilTreatment771A-VIII.10Environmental--Miscellaneous774IX.DynamicSimulationUsingDYNAPLUS778A-IX.1Introduction778A-IX.2ProcedureforDynamicSimulation779A-IX.3Control-LoopDefinitioninDYNAPLUS779A-IX.4TutorialExercise:ControlofaBinaryDistillationColumn780A-IX.5DynamicSimulationoftheMCBSeparationProcess791X.HeuristicsforProcess,EquipmentDesign795CompressorsandVacuumPumps795ConveyorsforParticulateSolids796CoolingTowers796CrystallizationfromSolution797Disintegration797DistillationandGasAbsorption798DriversandPowerRecoveryEquipment799DryingofSolids799Evaporators800Extraction,Liquid-Liquid800Filtration801FluidizationofParticleswithGases801HeatExchangers802Insulation802MixingandAgitation803ParticleSizeEnlargement803Piping804Pumps804Reactors804Refrigeration805SizeSeparationofParticles805Utilities:CommonSpecifications806Vessels(Drums)806Vessels(Pressure)806Vessels(StorageTanks)807Xl.MaterialsofConstruction808XILGenerationofLinearModelsinStandardForms810AuthorIndex815SubjectIndex817

章節(jié)摘錄

  With the detailed process flow sheet completed, the task integration step, which was initiated in the preliminary process synthesis, is revisited by the design team. The assumptions are checked and opportunities are sought to improve the designs of the processing units, and to achieve a more efficient process integration. In the latter, attempts are made to match cold streams that need to be heated with hot streams that have cooling requirements, so as to reduce the need for external utilities such as steam and cooling water. In addition, where possible, power is extracted from hot streams at elevated pressures, so as to drivecompressors and pumps. Often, significant improvements can be made in the process design beyond those achievable in the preliminary process synthesis. The algorithmic methods in Chapter 7 for heat and power integration are commonly applied by the design team; the yprovide a systematic approach to minimizing the utilities, matching the hot and cold streams, inserting turbines (as a part of heat engines), and so on.  Having completed the detailed process flow sheet, the design team seeks to check its key assumptions further and to obtain the additional information needed to begin work on the detailed design. As discussed earlier, this usually involves three activities in parallel, the first of which is to create a detailed database by refining and adding to the preliminary database. In the other two activities, a pilot plant is constructed to confirm that the equipment items operate properly and to provide data for the detailed databank, and a simulation model is prepared to enable the team to project the impact of changes in the design and operation parameters, such as temperatures, pressures, reflux ratios, and the number of stages.  In creation of the detailed database, it is common to add transport and kinetics data, as well as data concerning the feasibility of the separations, the identity of any forbidden matches in heat exchange, heuristic parameters, and data for sizing the equipment. Each process requires somewhat different data, and hence it is inappropriate to generalize. However, it is instructive to examine the mix of data needed by a design team in connection with the vinyl chloride process in Figure 2.11.  Beginning with the chlorination reactor, data are needed to determine the impact of the concentrations of C2H4, Cl2, and FeCl3 catalyst in the C2H4Cl2 pool on the intrinsic rate of the chlorination reaction (in kmol/m3hr). With these data, the team can deternune the order of the reaction and its rate constant as a function of temperature, and eventually compute the residence time to achieve nearly complete conversion.  Sirrular data are required for the pyrolysis reactor. In tlus case, the intrinsic rate of reaction is needed as a function of concentration, temperature, and pressure. Furthermore, since the rate of reaction may be limited by the rate at which heat is transferred to the reacting gases, it is probably desirable to estimate the tube-side heat transfer coefficient, hi, as a function of the Reynolds and Prandtl numbers in the tubes. The appropriate equations and coefficients, which are described in Chapter 8, would be added to the database. In the vinyl chloride process, because of the significant differences in the volatilities of the three principal chemical species, distillation, absorption, and stripping are prime candidates for the separators, especially at the lugh production rates specified. For other processes, liquid-liquid extraction, enhanced distillation, adsorption and membrane separators might become more attractive, in which case the design team would need to assemble data that describe the effect of solvents on species phase equilibrium, species adsorption isotherms, and the perme abilities of the species through various membranes.  A key linutation in the flow sheets in Figures 2.9 and 2.11 is that the cold C2H4CI2 streamis not heated by the pyrolysis products because the rate of carbon deposition in such a feed/product heat exchanger is anticipated to be high, and would cause the heat exchanger to foul with carbon. As discussed above, the design team would normally apply the methods of heat and power integration to design a network of heat exchangers that would effectsignificant economies. Hence, it is important to learn more about the rate of carbon deposition. Before the team proceeds to the detailed design stage, it needs data to confirm the validity of this perception above-that is, to enable it to characterize the intrinsic rate of carbon depositon. If the rate is found to be sufficiently low, the team may decide to cool the hot pyrolysis products through heat exchange with the cold streams. For maintenance, to remove carbon deposits periodically, two heat exchangers could be installed in parallel, one of which would be operated while the other is being cleaned. This would provide substantial savings in fuel and cooling water utilities. On the other hand, if the rate of carbon deposition is high, the design team would avoid the exchange of heat between these two streams; that is, it would continue to consider the exchange of that heat to bea so-called forbidden match.  ……

圖書(shū)封面

評(píng)論、評(píng)分、閱讀與下載


    過(guò)程設(shè)計(jì)原理 PDF格式下載


用戶(hù)評(píng)論 (總計(jì)0條)

 
 

 

250萬(wàn)本中文圖書(shū)簡(jiǎn)介、評(píng)論、評(píng)分,PDF格式免費(fèi)下載。 第一圖書(shū)網(wǎng) 手機(jī)版

京ICP備13047387號(hào)-7