出版時(shí)間:2009-5 出版社:中國(guó)科學(xué)技術(shù)大學(xué)出版社 作者:陳少華,王自強(qiáng) 編著 頁(yè)數(shù):280
Tag標(biāo)簽:無(wú)
前言
大學(xué)最重要的功能是向社會(huì)輸送人才。大學(xué)對(duì)于一個(gè)國(guó)家、民族乃至世界的重要性和貢獻(xiàn)度,很大程度上是通過(guò)畢業(yè)生在社會(huì)各領(lǐng)域所取得的成就來(lái)體現(xiàn)的。中國(guó)科學(xué)技術(shù)大學(xué)建校只有短短的50年,之所以迅速成為享有較高國(guó)際聲譽(yù)的著名大學(xué)之一,主要就是因?yàn)樗囵B(yǎng)出了一大批德才兼?zhèn)涞膬?yōu)秀畢業(yè)生。他們志向高遠(yuǎn)、基礎(chǔ)扎實(shí)、綜合素質(zhì)高、創(chuàng)新能力強(qiáng),在國(guó)內(nèi)外科技、經(jīng)濟(jì)、教育等領(lǐng)域做出了杰出的貢獻(xiàn),為中國(guó)科大贏得了“科技英才的搖籃”的美譽(yù)。2008年9月,胡錦濤總書記為中國(guó)科大建校五十周年發(fā)來(lái)賀信,信中稱贊說(shuō):半個(gè)世紀(jì)以來(lái),中國(guó)科學(xué)技術(shù)大學(xué)依托中國(guó)科學(xué)院,按照全院辦校、所系結(jié)合的方針,弘揚(yáng)紅專并進(jìn)、理實(shí)交融的校風(fēng),努力推進(jìn)教學(xué)和科研工作的改革創(chuàng)新,為黨和國(guó)家培養(yǎng)了一大批科技人才,取得了一系列具有世界先進(jìn)水平的原創(chuàng)性科技成果,為推動(dòng)我國(guó)科教事業(yè)發(fā)展和社會(huì)主義現(xiàn)代化建設(shè)做出了重要貢獻(xiàn)。據(jù)統(tǒng)計(jì),中國(guó)科大迄今已畢業(yè)的5萬(wàn)人中,已有42人當(dāng)選中國(guó)科學(xué)院和中國(guó)工程院院士,是同期(自1963年以來(lái))畢業(yè)生中當(dāng)選院士數(shù)最多的高校之一。其中,本科畢業(yè)生中平均每1000人就產(chǎn)生工名院士和700多名碩士、博士,比例位居全國(guó)高校之首。還有眾多的中青年才俊成為我國(guó)科技、企業(yè)、教育等領(lǐng)域的領(lǐng)軍人物和骨干。在歷年評(píng)選的“中國(guó)青年五四獎(jiǎng)?wù)隆鲍@得者中,作為科技界、科技創(chuàng)新型企業(yè)界青年才俊代表,科大畢業(yè)生已連續(xù)多年榜上有名,獲獎(jiǎng)總?cè)藬?shù)位居全國(guó)高校前列。
內(nèi)容概要
本書系統(tǒng)地介紹了材料微尺度力學(xué)行為的尺寸效應(yīng)實(shí)驗(yàn)現(xiàn)象,重點(diǎn)介紹了幾種具有代表性的微尺度應(yīng)變梯度塑性理論及對(duì)微尺度實(shí)驗(yàn)現(xiàn)象的解釋,以及對(duì)裂紋尖端微尺度范圍內(nèi)解理斷裂的應(yīng)用。此外,還融會(huì)貫通地介紹了國(guó)內(nèi)外學(xué)者的原創(chuàng)性工作和創(chuàng)新性學(xué)術(shù)思想。 全書共8章。第1章介紹了應(yīng)變梯度塑性理論的應(yīng)用背景及經(jīng)典微極理論;第2章介紹了金屬材料典型的微尺度力學(xué)實(shí)驗(yàn)現(xiàn)象;第3至7章介紹了幾種典型的應(yīng)變梯度理論及其應(yīng)用;第8章介紹了應(yīng)變梯度理論在微觀斷裂力學(xué)中的應(yīng)用。 本書適合從事固體微尺度力學(xué)、先進(jìn)材料的微結(jié)構(gòu)設(shè)計(jì)與力學(xué)性能優(yōu)化、微機(jī)電和微電子元件力學(xué)行為研究的科技工作者及工程師使用和參考,也可供力學(xué)專業(yè)及材料專業(yè)的高年級(jí)本科生和研究生閱讀參考。
書籍目錄
Preface to the USTC Alumni's SeriesPreface1 Introduction 1.1 Brief introduction of experimental observations 1.2 An overview of strain gradient plasticity theory 1.3 Micro-polar theory2 Micro-scale experiments 2.1 Torsion experiments on copper wires 2.2 Micro-meter thin-beam bending 2.3 Micro-meter particle reinforced metal matrix composite 2.4 Micro and nano-indentation3 Theories proposed by Fleck and Hutchinson 3.1 Couple stress theory (CS) 3.2 Strain gradient (SG) theory proposed by Fleck and Hutchinson (1997) 3.3 Torsion of thin wires 3.4 Bending of thin beams 3.5 Micro-indentation hardness 3.6 Size effects in particle reinforced metal matrix composites4 MSG and TNT theories 4.1 A law for strain gradient plasticity 4.2 Deformation theory of MSG 4.3 Bending of thin beams 4.4 Torsion of thin wires 4.5 Micro-indentation hardness 4.6 Size effects in the particle-reinforced metal matrix composit 4.7 Taylor-based non-local theory of plasticity (TNT)5 C-W strain gradient plasticity theory 5.1 A hardening law for strain gradient plasticity theory 5.2 C-W couple-stress strain gradient plasticity theory 5.3 Verification of C-W couple-stress strain gradient plasticity theory 5.4 C-W strain gradient plasticity theory 5.5 Thin wire torsion and ultra-thin beam bend 5.6 Micro-indentation hardness 5.7 Size effects in particle reinforced metal-matrix composites6 Strain curl theory 6.1 The continuum theory of dislocation 6.2 Plastic strain curl theory 6.3 Finite element simulation of micro-indentation tests7 Strain gradient theory based on energy non-local model 7.1 Classical non-local theory of elasticity 7.2 A new framework of non-local theory 7.3 Constitutive equations of strain gradient theory 7.4 Thin wire torsion and ultra-thin beam bend 7.5 Analysis of micro-indentation8 Cleavage fracture near crack tip 8.1 Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity 8.2 Fracture in MSG plasticity 8.3 Application of C-W strain gradient plasticity on the cleavage fracture of crack tip 8.4 Prediction of strain-curl theory on plane-strain crack tip field
章節(jié)摘錄
插圖:(1994), the tension tests were performedon a 50 mm gauge length of copper wire, using a conventional screwdriven test machine and a specially designed sensitive load cell. The loadcell consisted of a 0.5 mm thick cantilever beam of rectangular section~ itwas loaded transversely at its free end by the copper wire. Strain gaugeswere placed near the built-in end of the beam and were used to detect theload on the copper wire.The torsion tests were performed using a specially designed screwdriven torsion machine sketched in Figure 2.1. The bottom end of thecopper wire specimen (of gauge length2 mm) was glued to a lower grip, and thetop end to a 60 mm long glass filament~ theglass filament acted as a torsional load cell.The free end of the glass filament wastwisted using a gear drive train and electricmotor. The twist along the length of theglass filament was measured by two needlepointers and protractors, and gave ameasure of the torque. Calibration of theglass filament load cell was carried outseparately using a dead weight and pulleyarrangement. The torsional strength of the copper wires roughly scaleswith diameter to the third power, to maximize sensitivity of the torsionalload cell glass filaments were used of diameter in the range 55 -250micrometers. The relative twist of the two ends of the copper wire was measuredby the needle pointer attached to the top end of the wire (the other endwas fixed to the lower grip of the test machine which could translate butnot rotate). During a test the wire was elongated by a few percent,causing the glass filament to bow. This was corrected for by translatingthe lower grip of the test machine via a gear drive.
編輯推薦
《微尺度塑性力學(xué)》是陳少華等編著的,由中國(guó)科學(xué)技術(shù)大學(xué)出版社出版。
圖書封面
圖書標(biāo)簽Tags
無(wú)
評(píng)論、評(píng)分、閱讀與下載