先進(jìn)功能材料力學(xué)

出版時(shí)間:2012-10  出版社:王彪 浙江大學(xué)出版社 (2012-09出版)  作者:王彪  頁(yè)數(shù):528  

內(nèi)容概要

  This book is an attempt to tackle mainly the followingtwo proplems: (1) to analyze the effect of stress and deformation on the functionalproperties of the materials, and (2) to establish the quantitative models relatedwith the microstructural evolution. The general formulation will be developedfrom the detailed analyses of the separated examples.

書(shū)籍目錄

1  Introduction2  Basic Solutions of Elastic and Electric Fields of Piezoelectric Materials with Inclusions and Defects2.1  The Coupled Differential Equations of Elastic and Electric Fields in Piezoelectric Solids2.1.1  Thermodynamic Framework2.1.2  Linear Constitutive Equations2.1.3  The Equation of Equlibrium2.1.4  The Basic Equations of a Static Electric Field2.1.5  Differential Equations for Piezoelectric Materials2.2  Boundary Conditions2.3  Solution Methods for Two-Dimensional Problems2.3.1  The Stroh Formalism for Piezoelectric Materials2.3.2  The Lekhnitskii Formalism for Piezoelectric Materials2.3.3  Conformal Transformation of the Core Function2.4  Basic Solutions for Two-Dimensional Problems2.4.1  Elliptical Cylindrical Inclusions in Piezoelectric Materials2.4.2  Cracks2.4.3  Dislocations and Line Charges2.5  Solution Methods for Three-Dimensional Problems2.5.1  Eigenstrains and Equivalent Inclusion Method2.5.2  Method of Fourier Integrals2.5.3  Method of Green's Function2.6  Basic Solution for Three-Dimensional Problems2.6.1  Ellipsoidal Inhomogeneous Inclusions2.6.2  Flat Elliptical Cracks2.6.3  Ellipsoidal Inhomogeneity Embedded in an Infinite Matrix when both Phases Undergo Eigenstrains2.6.4  Green's Function2.7  Remarks References3  Micromechanics Models of Piezoelectric and Ferroelectrie Composites3.1  Background3.2  Some Definitions3.3  Effective Material Constants of Piezoelectric Composites3.3.1  The Dilute Model3.3.2  The Self-Consistent Model3.3.3  The Mori-Tanaka Mean Field Model3.3.4  The Differential Model3.4  Energy Formulation of Ferroelectric Composites3.4.1  Elastic Strain Energy Density for Ferroelectric Composites3.4.2  Intrinsic Free Energy Density for Ferroelectric Composites3.4.3  Total Free Energy for Ferroelectric Composites with Spherical Inclusions3.5  Phase Diagrams3.5.1  Total Free Energy for Ferroelectric Composites with Spherical Inclusions and Equiaxed Strains3.5.2  Phase Diagrams and Total Polarizations3.6  Remarks Appendix A: Radon Transform References4  Determination of the Smallest Sizes of Ferroeleetric Nanodomains4.1  Introduction4.2  Electric Fields in Ferroelectric Thin Film4.2.1  General Expression of Electric Field of Ferroelectric Domain4.2.2  AFM-Induced Electric Field in Ferroelectric Thin Films4.3  Energy Expressions4.3.1  Energy Expression for 180~ Domain in a FerroelectricFilm Covered with Top and Bottom Electrodes4.3.2  Energy Expression for 180~ Domain in FerroelectricFilm Induced by an AFM Tip without the Top Electrode4.4  Driving Force and Evolution Equations of Domain Growth4.5  Stability Analysis4.6  RemarksAppendix B: Derivation of the Electric and Magnetic Field for a Growing 180° DomainReferences5  Size and Surface Effects of Phase Transition on Nanoferroelectrie Materials5.1  Introduction and Overview of Ferroelectrics in Nanoscale Dimensions5.1.1  Ferroelectric Thin Films in Nanoscale Dimensions5.1.2  Ferroelectric Tunneling Junctions and Capacitors in Nanoscale Dimensions5.1.3  Ferroelectric Multilayers in Nanoscale5.1.4  Ferroelectric Nanowires and Nanotubes5.1.5  Ferroelectric Nanograins or Nanoislands on Substrates5.2  Thermodynamic Modeling and Stability Analysis of Ferroelectric Systems5.2.1  Background of the Thermodynamic Modeling for Ferroeleclrics5.2.2  Electrostatics for Ferroelectrics5.2.3  Thermodynamics of Ferroelectrics5.2.4  Stability Analysis on Critical Properties of Ferroelectric Systems5.3  Ferroelectric Thin Films in Nanoscale5.3.1  Thermodynamic Model for a Thick Ferroelectric Film5.3.2  Size and Surface Effects on Ferroelectric Thin Films5.3.3  The Evolution Equation and Stability of the Stationary States..5.3.4  Curie Temperature and Critical Thickness5.3.5  Curie-Weiss Law of Ferroelectric Thin Film in Nanoscale5.4  Critical Properties of Ferroelectric Capacitors or Tunnel Junctions..5.4.1  The Thermodynamic Potential of the FerroelectricCapacitors or Tunnel Junctions5.4.2  The Evolution Equation and Stability of the Stationary States..5.4.3  Curie Temperature of the Ferroelectric Capacitors orTunnel Junctions5.4.4  Polarization as a Function of Thickness of the FerroelectricCapacitors or Tunnel Junctions5.4.5  Critical Thickness of the Ferroelectric Capacitors orTunnel Junctions5.4.6  Curie-Weiss Relation of the Ferroelectric Capacitors orTunnel Junctions .5.5  Ferroelectric Superlattices in Nanoscale5.5.1  The Free Energy Functional ofFerroelectric Superlattices5.5.2  The Phase Transition Temperature ofPTO/STO Superlattice.5.5.3  Polarizafion and Critical Thickness ofPTO/STO Superlattice5.5.4  The Curie-Weiss-Type Relation ofPTO/STO Superlattice5.6  Ferroelectric Nanowires and Nanotubes5.6.1  Surface Tension ofFerroelectric Nanowires and Nanotubes.5.6.2  Size and Surface Effects on Ferroelectric Nanowires5.6.3  Ferroelectric Nanotubes5.7  Ferroelectric Nanograins or Nanoislands5.7.1  Free Energy of Ferroelectric Nanograins or Nanoislands5.7.2  Stability of the Ferroelectric State and TransitionCharacteristics5.7.3  Critical Properties of Nanograins or Nanoislands5.8  RemarksReferences6  Strain Engineering: Ferroeleetrie Films on Compliant Substrates6.1  Background6.2  Manipulation of Phase Transition Behavior of Ferroelectric ThinFilms on Compliant Substrates6.2.1  Free Energy Expressions6.2.2  Evolution Equations6.2.3  Manipulation of Ferroelectric Transition Temperature and Critical Thickness6.2.4  Manipulation of the Order of Transition6.3  Piezoelectric Bending Response and Switching Behavior ofFerroelectric Thin Film with Compliant Paraelectric Substrate6.3.1  Model of Ferroelectric Thin Film with CompliantParaelectric Substrate and the Energy Expressions6.3.2  Solution of the Evolution Equation6.3.3  The Stationary and Relative Bending Displacements of theBilayer6.3.4  Dynamic Piezoelectric and Bending Response of theBilayer Under a Cyclic Electric Field6.3.5  Examples and Discussions6.4  Critical Thickness for Dislocation Generation in Piezoelectric ThinFilms on Substrate6.4.1  Elastic and Electric Fields in a Piezoelectric Semi-InfiniteSpace with a Dislocation6.4.2  Critical Thickness for Dislocation Generation6.4.3  Effect of Piezoelectric Behavior of the Materials on theCritical Thickness for Dislocation Formation6.5  Critical Thickness of Dislocation Generation in FerroelectdcThin Film on a Compliant Substrate6.5.1  Mechanical Properties of the Problem6.5.2  The Formation Energy and the Critical Thickness of Spontaneous Formation of Misfit Dislocation6.6  RemarksReferences7  Derivation of the Landau-Ginzburg Expansion Coefficients7.1  Introduction7.2  Fundamental of the Landau-Devonshire Theory7.2.1  The History of the Landau Free Energy Theory7.2.2  The Thermodynamic Functions of the Dielectrics and Phase Transition7.2.3  The Expansion of the Free Energy and Phase Transition7.3  Determination of Landau Free Energy Expansion Coefficients Based on Experimental Methods7.3.1  The Experimental Observation of the Phase Transition Characteristics in Ferroelectrics7.3.2  The Phenomenological Treatment of Devonshire Theory7.3.3  The Elastic Gibbs Free Energy of PbTiO3 and Its Coefficients7.3.4  The Determination of the Expansion Coefficients fromthe First-Principle Calculation Based on the EffectiveHamiltonian Method7.4  Gradient Terms in the Landau-Devonshire-Ginzburg Free Energy Expansion7.4.1  The Consideration of Spatial Non-uniform Distributionof the Order Parameters in the Landau Theory7.4.2  The Critical Region and the Applicability of LandauMean Field Theory7.4.3  Determination of the Gradient Terms from the LatticeDynamic Theory7.4.4  The Extrapolation Length and the Gradient Coefficient7.5  The Transverse Ising Model and Statistical Mechanics Approaches7.5.1  Phase Transition from the Transverse Ising Model7.5.2  Relationship of the Parameters Between Landau Theoryand the Transverse Ising Model7.5.3  Determination of Landau-Ginzburg Free Energy ExpansionCoefficients from Statistical Mechanics7.6  RemarksReferences8  Multiferroie Materials8.1  Background8.2  Coupling Mechanism of Multiferroic Materials8.2.1  Single Phase Multiferroic Materials8.2.2  Magnetoelectric Composites8.3  Theories of Magnetoeleclric Coupling Effect at Low Frequency8.3.1  Energy Formulation for Multiferroic Composites8.3.2  Phase Transition Behaviors in Layered Structures8.3.3  Magnetoelectfic Coupling Coefficients in Layered Structures8.4  Magnetoelectric Coupling at Resonance Frequency8.4.1  Magnetoelectric Coupling at Bending Modes8.4.2  Magnetoelectfic Coupling at Electromechanical Resonance8.4.3  Magnetoelectric Coupling at Ferromagnetic Resonance8.5  RemarksReferences9  Dielectric Breakdown of Mieroeleetronie and Nanoeleetronie Devices.9.1  Introduction9.2  Basic Concepts9.2.1  MOS Structure9.2.2  Different Tunneling Modes9.2.3  Dielectric Breakdown Modes9.2.4  Defect Generation9.2.5  Basic Statistical Concepts of Dielectric Breakdown9.2.6  Stress Induced Leakage Current9.2.7  Holes Generation9.2.8  Energetics of Defects9.3  Mechanism Analysis of Tunneling Phenomena in Thin Oxide Film.9.3.1  Self-consistent SchrSdinger's and Poisson's Equations9.3.2  Transmission Coefficient9.3.3  Tunneling Current Components9.3.4  Microscopic Investigation of Defects from First-Principles Calculation9.3.5  Manipulating Tunneling by Applied Strains9.4  Degradation Models in Gate Oxide Films9.4.1  Anode Hole Injection Model9.4.2  Thermochemical Model9.4.3  Anode Hydrogen Release Model9.4.4  Thermal Breakdown Model9.4.5  Mechanical-Stress-Induced Breakdown Model9.4.6  Remarks9.5  Statistical Models of Dielectric Breakdown9.5.1  A Basic Statistical Model9.5.2  A Three-Dimensional Statistical Model9.5.3  Sphere and Cube Based Percolation Models9.5.4  Combination of Percolation Model and Degradation Model9.6  Damage of Dielectric Breakdown in MOSFET9.6.1  Lateral Propagation of Breakdown Spot9.6.2  Dielectric Breakdown-Induced Epitaxy9.6.3  Dielectric Breakdown-Induced Migration9.6.4  Meltdown and Regrowth of Silicided Poly-Si Gate9.6.5  Damage in Substrate9.7  RemarksReferencesIndex

編輯推薦

《先進(jìn)功能材料力學(xué)(英文版)》編輯推薦:近些年來(lái),壓電、鐵電、光電等功能材料由于制備方法和工藝的進(jìn)步以及越來(lái)越廣泛的工程應(yīng)用已經(jīng)成為材料科學(xué),凝聚態(tài)物理,力學(xué)等領(lǐng)域的研究熱點(diǎn)。這些功能材料傳統(tǒng)上不是力學(xué)領(lǐng)域的研究課題。但由于現(xiàn)代的材料加工工藝必然導(dǎo)致不可忽略的應(yīng)力和應(yīng)變,而且,人們也發(fā)現(xiàn)由于應(yīng)變應(yīng)力的存在,功能材料的性能會(huì)發(fā)生很大的改變。這樣,力學(xué)與電、磁、光等功能的耦合成為目前熱門(mén)的研究領(lǐng)域。而且,任何的功能材料都存在強(qiáng)度和可靠性的問(wèn)題,這也需要拓寬傳統(tǒng)的力學(xué)模型和理論進(jìn)行解決?!断冗M(jìn)功能材料力學(xué)(英文版)》的重點(diǎn)是針對(duì)力、電、磁、光的重要耦合問(wèn)題,發(fā)展新穎的數(shù)學(xué)模型進(jìn)行解釋、預(yù)報(bào)先進(jìn)功能材料的性能。研究利用力學(xué)變量定量調(diào)控功能材料性能的理論和方法。將系統(tǒng)總結(jié)作者多年來(lái)在壓電、鐵電和光電等功能材料與力學(xué)相互作用等方面的研究成果,初步形成功能材料的力學(xué)模型理論體系?!断冗M(jìn)功能材料力學(xué)(英文版)》重點(diǎn)強(qiáng)調(diào)交叉學(xué)科和非線性科學(xué)的作用,從工程實(shí)際問(wèn)題出來(lái),系統(tǒng)描述物理建模和求解的方法。《先進(jìn)功能材料力學(xué)(英文版)》可以作為相關(guān)學(xué)科的研究生和研究人員的主要參考書(shū)。

圖書(shū)封面

評(píng)論、評(píng)分、閱讀與下載


    先進(jìn)功能材料力學(xué) PDF格式下載


用戶評(píng)論 (總計(jì)0條)

 
 

 

250萬(wàn)本中文圖書(shū)簡(jiǎn)介、評(píng)論、評(píng)分,PDF格式免費(fèi)下載。 第一圖書(shū)網(wǎng) 手機(jī)版

京ICP備13047387號(hào)-7