離散數(shù)學(xué)引論

出版時間:2009-11  出版社:安德遜(Ian Anderson) 清華大學(xué)出版社 (2009-11出版)  作者:安德遜  頁數(shù):200  
Tag標(biāo)簽:無  

前言

在學(xué)校教書多年,當(dāng)學(xué)生(特別是本科生)問有什么好的參考書時,我們所能推薦的似乎除了教材還是教材,而且不同教材之間的差別并不明顯、特色也不鮮明。所以多年前我們就開始醞釀,希望為本科學(xué)生引進一些好的參考書,為此清華大學(xué)數(shù)學(xué)科學(xué)系的許多教授與清華大學(xué)出版社共同付出了很多心血。這里首批推出的十余本圖書,是從Springer出版社的多個系列叢書中精心挑選出來的。在叢書的籌劃過程中,我們挑選圖書最重要的標(biāo)準(zhǔn)并不是完美,而是有特色并包容各個學(xué)派(有些書甚至有爭議,比如從數(shù)學(xué)上看也許不夠嚴格),其出發(fā)點是希望我們的學(xué)生能夠吸納百家之長;同時,在價格方面,我們也做了很多工作,以使得本系列叢書的價格能讓更多學(xué)校和學(xué)生接受,使得更多學(xué)生能夠從中受益。本系列圖書按其定位,大體有如下四種類型(一本書可以屬于多類,但這里限于篇幅不能一一介紹)。

內(nèi)容概要

  《離散數(shù)學(xué)引論》以簡潔和通俗的形式介紹組合數(shù)學(xué)的一些本質(zhì)性內(nèi)容圖論的重要問題,計數(shù)方法和試驗設(shè)計,其中圖論約占一半篇幅。《離散數(shù)學(xué)引論》很適于和中國中學(xué)數(shù)學(xué)教材的內(nèi)容相銜接,閱讀《離散數(shù)學(xué)引論》所需的預(yù)備知識只是中學(xué)數(shù)學(xué)(唯一的例外是在圖論中需要矩陣的描述方式,但即使沒有學(xué)過線性代數(shù),也是可以接受的)。  書中有大量習(xí)題和例題,習(xí)題附有部分解答和提示,適于自學(xué)?!峨x散數(shù)學(xué)引論》可用作數(shù)學(xué)、計算機科學(xué)、信息科學(xué)等專業(yè)大學(xué)本科生的組合數(shù)學(xué)教材,可在大學(xué)一年級講授。

作者簡介

作者:(美國)安德遜(Ian Anderson)

書籍目錄

Contents1. Counting and Binomial Coefficients1.1 Basic Principles1.2 Factorials1.3 Selections1.4 Binomial Coefficients and Pascal's Triangle 1.5 Selections with——Repetitions1.6 AUsefulMatrixInversion2. Recurrence2.1 Some Examples 2.2 The Auxiliary Equation Method2.3 Generating Fhnctions2.4 Derangements2.5 Sorting Algorithms2.6 Catalan Numbers3. Introduction to Graphs3.1 The Concept of a Graph3.2 Paths in Graphs3.3 Trees 3.4 Spanning Trees3.5 Bipartite Graphs3.t5 Planarity3.7 Polyhedra.4. Travelling Round a Graph4 1 Hamiltonian Graphs4.2 Planarity and Hamiltonian Graphs4.3 The Travelling Salesman Problem 4.4 Gray Codes4.5 EulerianDigraphs5. Partitions and Colourings5.1 Partitions of a Set 5.2 StirlingNumbers5.3 Counting Functions5.4 Vertex Colourings of Graphs 5.5 Edge Colourings of Graphs 6 The Inclusion-Exclusion Principle6.1 The Principle 6.2 Counting Surjections6.3 Counting Labelled Trees6.4 Scrabble.15.5 The MSnage Problem 7. Latin Squares and Hall's Theorem.7.1 Latin-Squares and -Orthogonality 7.2 Magic Squares7.3 Systems of Distinct Representatives7.4 From Latin Squares to Affine Planes8 Schedules and 1-Factorisations8.1 The Circle Method8.2 Bipartite Tournaments and 1-Factorisations of Kn8.3 Tournaments from Orthogonal Latin Squares9. Introduction to Designs. 9.1 Balanced Incomplete Block Designs9.2 Resolvable Designs 9.3 Finite Projective Planes9.4 Hadamard Matrices and Designs9.5 Difference Methods9.5 Hadamard Matrices and CodesAppendixSolutions Further ReadingBibliographyIndex

章節(jié)摘錄

插圖:The How, When, and Why of MathematicsWhat is mathematics? Many people think of mathematics (incorrectly) as addition, subtraction, multiplication, and division of numbers. Those with more mathematical training may think of it as dealing with algorithms. But most professional mathematicians think of it as much more than that. While we certainly hope that our students will perform algorithms correctly, what we really want is for them to understand three things: how you do something, why it works, and when it works. The problems we present to you in this book concentrate on these three goals. If this is the first time you have been asked to prove theorems, you may find this to be quite a challenge. Not only will you be learning how to solve the problem, you will also be learning how to write up the solution. The necessary definitions and background to understand a problem, as well as a general plan of attack, will always be presented in the text. It's up to you to spend the time reading, trying various approaches, rereading, and reproaching. You will probably be spending more time on fewer exercises than you ever have before. While you are now beyond the stage of being given steps to follow and practice, there are general rules that can assist you in your transition to doing higher mathematics. Many people have written about this subject before.

編輯推薦

《離散數(shù)學(xué)引論》:Springer大學(xué)數(shù)學(xué)圖書:影印版

圖書封面

圖書標(biāo)簽Tags

評論、評分、閱讀與下載


    離散數(shù)學(xué)引論 PDF格式下載


用戶評論 (總計4條)

 
 

  •   包裝的很結(jié)實,質(zhì)量很好
  •   是正版,內(nèi)容全面不錯
  •   學(xué)校使用的教材,很實用
  •   不錯,字很清晰,質(zhì)量很好。。。。。
 

250萬本中文圖書簡介、評論、評分,PDF格式免費下載。 第一圖書網(wǎng) 手機版

京ICP備13047387號-7