00004, tushu007.com
<<Javal 0O QOO QO0OO0>>

guoooon
O0D0<<lava0 OO QOQOOOOO>>
1300 ISBNUO O 0 9787302207306

1000 ISBNU 1O 10 7302207305
0dodoo2009-9
gooooboooogooao
godooobobooooooooon
0 0 0526

guooobobbogooooopbrbbbggoooobbbgooooon

00000000 http://www.tushu007.com

Page 1

00004, tushu007.com
<aval 0 OO OO QO0OQd>>

gd

[0 O This book is designed to serve as a text for a course on data structures and algo-rithms. This course is typically
referred to as the CS2 course because it is oftentaken as the second course in a computing curriculum. We have
designed thisbook to embrace the tenets of Computing Curricula 2001 [CC2001[1 .00 O Pedagogically, this book
follows the style and approach of the leading CS1book Java Software Solutions: Foundations of Program Design,
by John Lewisand William Loftus. Our book uses many of the highly regarded features of thatbook, such as the Key
Concept boxes and complete code examples. Together,these two books support a solid and consistent approach to
either a two-courseor three-course introductory sequence for computing students. That said, thisbook does not
assume that students have used Java Sofware Solutions in a previ-ous course.[] [1 Material that might be presented
in either course [such as recursion or sorting[] is presented in this book as well. We also include strong reference
material pro-viding an overview of object-oriented concepts and how they are realized in Java.l] O We understand
the crucial role that the data structures and algorithms courseplays in a curriculum and we think this book serves
the needs of that course well. The Third EditionWe have made some key modifications in this third edition to
enhance its peda-gogy. The most important-change is a fundamental reorganization of material thatis designed to
create a cleaner flow of topics. Instead of having an early, largechapter to review obiect-oriented concepts, weve
included that material as anappendix for reference. Then we review concepts as needed and appropriate in
thecontext of the implementation strategies discussed throughout the book and citethe appropriate reference
material. This not only links the topics in a timely fash-ion but also demonstrates the usefulness of particular
language constructs.[] [Weve expanded the discussion of Analysis of Algorithms, and given it its ownchapter.
The discussion, however, stays at an appropriately moderate level. Ourstrategy is to motivate the concepts involved
in the analysis of algorithms, layinga solid foundation, rather than get embroiled in too much formality.

Page 2

00004, tushu007.com
<<Javal 0O QOO QO0OO0>>

goon

000000 O John Lewis[William Loftust 0 00 0 O 0O CS10 O Java Software Solutionsl] Foundations
of Program Design” O 0O 0O 0O O

OO0O00OO0OD0OO0" JavaSoftware Structures: Designing and Using Data Structures” O OO0 000000
OO00000000bOO0DOOoDODOooOo* oooooooO” boogooad
0000000000000 DO0DO0DO000D3000ooooDooooooooooan
OO00000000DOO0DOO0DoOooDOooooooooon
OO0000000000D0O0DO0D00D000000bO0DOO0DOO0oDooooDooDoooooon
OO0o0o0o0oooooood

000000 0000000 Javal 0O00O0OODODOO0OO

Page 3

00004, tushu007.com
<aval 0 OO OO QO0OQd>>

good

ContentsPrefacel] Chapter 1 Introduction [J 1.1 Soffware Quality [0 [I Correctness [[1 Reliability [

[0 Robustness (I [Usability [J [0 Maintainability 00 [0 Reusability (1 [0 Portability (I O Efficiency [[0 Quality
Issues [1.2 Data Structures [J [I A Physical Example [J [0 Containers as Objects Chapter 2 Analysis of Algorithms
[0 2.1 Algorithm Efficiency O 2.2 Growth Functions and Big-OH Notation [0 2.3 Comparing Growth Functions

(0 2.4 Determining Time Complexity [0 [0 Analyzing Loop Execution [[0 Nested Loops [1 [0 Method Calls
Chapter 3 Collections 1 3.1 Introduction to Collections [J [J Abstract Data Types [0 [0 The Java Collections[] 3.2
A Stack Collectiond 3.3 Crucial OO Concepts Inheritance Class Hierarchies The Object Class
Polymorphism References and Class Hierarchies Genericsl] 3.4 A Stack ADT Interfacesl] 3.5 Using Stacks

[Evaluating Postfix Expressions [3.6 Exceptions Exception Messages The try Statement Exception
Propagation[] 3.7 Implementing a Stack[J With Arrays Managing Capacity[] 3.8 The ArrayStack Class The
Constructors The push operation The pop operation The peek operation Other OperationsChapter 4 Linked
Structures[] 4.1 References as Links[J 4.2 Managing Linked Lists Accessing Elements Inserting Nodes

Deleting Nodes Sentinel Nodes[I 4.3 Elements Without Links Doubly Linked ListsC] 4.4 Implementing a Stack
[0 With Links The LinkedStack ClasstJ [J [J [0 Chapter 5 Queues Chapter 6 Lists Chapter 7 RecursionChapter 8
Sorting and Searching Chapter 9 TheesChapter 10 Binary Search Thees Chapter 11 Priority Queues and
HeapsChapter 12 Multi-way Search TreesChapter 13 GraphsChapter 14 Hashing Chapter 15 Sets adn
MapsAppendix A UMLAppendix B Object-Oriented Design

Page 4

00004, tushu007.com
<aval 0 OO OO QO0OQd>>

good

[0 O Abstraction is another important software engineering concept. In large soft-ware systems, it is virtually
impossible for any one person to grasp all of the de-tails of the system at once. Instead, the system is divided into
abstract subsystemssuch that the purpose of and the interactions among those subsystems can bespecified.
Subsystems may then be assigned to different developers or groups ofdevelopers that will develop the subsystem to
meet its specification.[] 1 An object is the perfect mechanism for creating a collection because, if it is de-signed
correctly, the internal workings of an object are encapsulated from the restof the system. In almost all cases, the
instance variables defined in a class shouldbe declared with private visibility. Therefore, only the methods of that
class canaccess and modify them. The only interaction a user has with an object should bethrough its public
methods, which represent the services that the object provides. As we progress through our exploration of
collections, we will always stressthe idea of separating the interface from the implementation. Therefore, for
everycollection that we examine, we should consider the following:[J [0 How does the collection operate,
conceptually[

O OO How do we formally define the interface to the collection]

0 0 What kinds of problems does the collection help us solve[]

O O In which various ways might we implement the collectionl]

[0 O What are the benefits and costs of each implementation(]

0J [J Before we continue, lets carefully define some other terms related to the explo-ration of collections. A data
type is a group of values and the operations definedon those values. The primitive data types defined in Java are the
primary exam-pies. For example, the integer data type defines a set of numeric values and theoperations

[addition, subtraction, etc.[] that can be used on them. An abstract data type (1 ADTL is a data type whose
values and operations arenot inherently defined within a programming language. It is abstract only in thatthe details
of its implementation must be defined and should be hidden from theuser. A collection, therefore, is an abstract
data type.

Page 5

00004, tushu007.com
<<Javal 0O QOO QO0OO0>>

goon
gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 6

