出版時(shí)間:2008-12 出版社:清華大學(xué)出版社 作者:比爾 頁(yè)數(shù):322
內(nèi)容概要
近年來(lái),國(guó)家教育部出臺(tái)的一系列倡導(dǎo)高等院校開(kāi)展雙語(yǔ)教學(xué)、引進(jìn)原版教材的政策,對(duì)于加快我國(guó)高等教育改革的步伐,培養(yǎng)具有國(guó)際競(jìng)爭(zhēng)力的高水平技術(shù)人才,發(fā)揮了積極的促進(jìn)作用。材料力學(xué)也引進(jìn)了多個(gè)版本的英文原版教材,但由于教育體制和教學(xué)模式的差異,一時(shí)還很難直接用于我國(guó)目前的課程教學(xué)??s編和改編是把優(yōu)秀原版教材引入雙語(yǔ)教學(xué)的橋梁。我們?cè)陂_(kāi)展材料力學(xué)雙語(yǔ)教學(xué)的過(guò)程中,針對(duì)本專(zhuān)業(yè)的特點(diǎn),嘗試在國(guó)外優(yōu)秀教材基礎(chǔ)上精選其主體內(nèi)容并進(jìn)行適當(dāng)縮編的方式,取得了較好的效果。通過(guò)幾年的教學(xué)實(shí)踐我們體會(huì)到,縮編的原版教材有內(nèi)容貼近教學(xué)和語(yǔ)言原汁原味等特點(diǎn),適于教學(xué)。
由Ferdinand P.Beer等編寫(xiě)的Mechanics ofMaterials(Fourth Edition in SI
Units)采用以應(yīng)力為鋪路石,以構(gòu)件變形為主線的體系,符合國(guó)內(nèi)教學(xué)改革的主流方向。教材結(jié)構(gòu)清晰、論述嚴(yán)謹(jǐn)、圖文并茂,同時(shí)還附有少量計(jì)算題目。該教材將桿件設(shè)計(jì)概念貫穿全書(shū),廣泛采用三維插圖,有助于揭示力學(xué)原理、貼近工程實(shí)際以及培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力。書(shū)中每章都分別針對(duì)基本概念和原理設(shè)置多個(gè)“Examples
and Sample Problems”和“Homework ProblemSets”,每章后面還設(shè)有“Chapter Review
and Summary”、“Review
Problems”和“ComputerProblems”,具有突出“三基”,循序漸進(jìn),由簡(jiǎn)到繁的特色。教材中一些專(zhuān)題性的內(nèi)容是獨(dú)立的,便于刪減。
經(jīng)過(guò)認(rèn)真對(duì)比研究,我們選擇了該書(shū)作為基礎(chǔ)進(jìn)行縮編??s編后的教材保留了原版教材的特色,同時(shí)結(jié)合國(guó)內(nèi)雙語(yǔ)教學(xué)的需要適當(dāng)?shù)貏h減了一些內(nèi)容,如去掉了塑性變形(除軸向拉伸與壓縮變形以外)等國(guó)內(nèi)材料力學(xué)教材都不講授或很少講授的內(nèi)容,精選了部分例題、習(xí)題講解和習(xí)題等。
作者簡(jiǎn)介
作者:(美國(guó))比爾(Ferdinand P. Beer) 改編:張燕 王紅囡 彭麗
書(shū)籍目錄
1 Introduction--Concept of Stress
1.1 Introduction
1.2 Stresses in the Members of a Structure
1.3 Analysis and Design
1.4 Axial Loading; Normal Stress
1.5 Shearing Stress
1.6 Bearing Stress in Connections
1.7 Application to the Analysis and Design of Simple
Structures
Problems 1.1
1.8 Stress on an Oblique Plane under, Axial Loading
1.9 Stress under General Loading Conditions; Components of
Stress
1.10 Design Considerations
Problems 1.2
Review and Summary for Chapter 1
Review Problems
Computer Problems
2 Stress and Strain--Axial Loading
2.1 Introduction
2.2 Normal Strain under Axial Loading
2.3 Stress- Strain Diagram
2.4 Hooke's Law; Modulus of Elasticity
2.5 Elastic versus Plastic Behavior of a Material
2.6 Repeated Loadings; Fatigue
2.7 Deformations of Members under Axial Loading
Problems 2.1
2.8 Statically Indeterminate Problems
Problems 2.2
2.9 Poisson's Ratio
2.10 Multiaxial Loading; Generalized Hooke's Law
2.11 Shearing Strain
Problems 2.3
2.12 Stress and Strain Distribution under Axial Loading;
Saint-Venant's Principle
2.13 Stress Concentrations
Problems 2.4
Review and Summary for Chapter 2
Review Problems
Computer Problems
3 Torsion
3.1 Introduction
3.2 Preliminary Discussion of the Stresses In a Shaft
3.3 Deformations in a Circular Shaft
3.4 Stresses in the Elastic Range
Problems 3.1
3.5 Angle of Twist in the Elastic Range
3.6 Statically Indeterminate Shafts
Problems 3.2
3.7 Design of Transmission Shafts
3.8 Stress Concentrations in Circular Shafts
Problems 3.3
Review and Summary for Chapter 3
Review Problems
Computer Problems
4 Pure Bending
5 Analysis and Design of Beams for Bnding
6 Shearing Stresses in Beams
7 Transformations of Stress and Strain
8 Principal Stresses Under a Given Loaing
9 Deflection of Beams
10 Columns
Appendices
章節(jié)摘錄
版權(quán)頁(yè): 插圖: when equal and opposite torques are applied to the ends of the "shaft" (Fig. 3.7b).While sliding will not actually take place in a shaft madeof a homogeneous and cohesive material, the tendency for sliding will exist,showing that stresses occur on longitudinal planes as well as on planes perpendicular to the axis of the shaft. 3.3. Deformations in a Circular Shaft Consider a circular shaft that is attached to a fixed support at one end(Fig. 3.8a).If a torque T is applied to the other end, the shaft will twist,with its free end rotating through an angle called the angle of twist(Fig. 3.8b).Observation shows that,within a certain range of values of T,the angle of twist is proportional to T.It also shows that is proportional to the length L of the shaft.In other words,the angle of twist for a shaft of the same material and same cross section,but twice as long,will be twice as large under the same torque T.One purpose of our analysis-will be to find the specific relation existing among,L,and T;another purpose will be to determine the distribution of shearing stresses in the shaft,which we were unable to obtain in the preceding section on the basis of statics alone. At this point,an important property of circular shafts should be noted:When a circular shaft is subjected to torsion,every, cross section remains plane and undistorted.In other words,while the various cross sections along the shaft rotate through different amounts,each cross section rotates as a solid rigid slab.This is illustrated in Fig. 3.9a,which shows the deformations in a rubber model subjected to torsion.The property we are discussing is characteristic of circular shafts,whether solid or hollow;it is not enjoyed by members of noncircular cross section.For example,when a bar of square cross section is subjected to torsion,its various cross sections warp and do not remain plane(Fig.3.9b).
編輯推薦
《材料力學(xué)(第4版)(英文縮編版)》由清華大學(xué)出版社出版。
圖書(shū)封面
評(píng)論、評(píng)分、閱讀與下載
250萬(wàn)本中文圖書(shū)簡(jiǎn)介、評(píng)論、評(píng)分,PDF格式免費(fèi)下載。 第一圖書(shū)網(wǎng) 手機(jī)版