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0000 OO0 25A MoreComplex Data Structure:Priority Queues Our primary goal in this book was
expressed at the outset of the chapter:we seek algorithms that improve qualitatively on brute-force search,and in
general we use polynomial-time solvability as the concrete formulation of this."pically,achieving a polynomial-time
solution to a nontrivial problem is not something that depends on fine-grained implementation details; rather,the
difference between exponential and polynomial is based on overcoming higher-level obstacles.Once one has an
efficient algorithm to solve a problem,however,it is often possible to achieve further improvements in running time
by being careful with the implementation details,and sometimes by using more complex data structures. Some
complex data structures are essentially tailored for use in a single kind of algorithm,while others are more generally
applicable.In this section,we describe one of the most broadly useful sophisticated data structures,the priority
queue.Priority queues will be useful when we describe how to implement some of the graph algorithms developed
later in the book.For our purposes here,it is a useful illustration of the analysis of a data structure that,unlike lists
and arrays,must perform some nontrivial processing,each time it is invoked. The Problem In the implementation of
the Stable Matching algorithm in Section 2.3,we discussed the need to maintain a dynamically changing set S (such
as the set of all free men in that case).In such situations,we want to be able to add elements to and delete elements
from the set S,and we want to be able to select an element from S when the algorithm calls for it. A priority queue is
designed for applications in which elements have a priority value,or key,and each time we need to select an element
from S,we want to take the one with highest priority.
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