00004, tushu007.com
<O QO00dn>>

gobooo

Jod<<ggod>>

1300 ISBNUO O 0 9787302122609

1000 ISBNO O 10 7302122601

0 0dod oo 2006-1

gooooboooogooao
O00[0]000000OKIleinberg).[l é vaTardos
000838

guooobobbogooooopbrbbbggoooobbbgooooon

00000000 http://www.tushu007.com

Page 1



00004, tushu007.com
<O QO00dn>>

goon

oooooboob@oo)y obobobobooooouoobooboboboo
oooooo@oo)yoooboobobobobobooooboooooooboboboboo
oooooo@uoo)yobobobobuoboooog
gobbobbbuoogooobbobbuoooogobobobboooooobobobboougg
goubbobbbugoogbobobbuodoogon
oooooo@uoo)yobobobobobooooooooboboboboboboooo
gOopowdb0b0ObOobO0obOOobOOobOOobObOo@UoO)Y oboobuboboboooog(@Eo
OH)yoooooooo

Page 2



00004, tushu007.com
<O QO00dn>>

good

[0 O Jon Kleinberg is a professor of Computer Science at Cornell
University. He received his Ph.D. from M.L.T. in 1996. He is the
recipient of an NSF Career Award, an ONR Young Investigator Award,
an IBM Outstanding Innovation Award, the National Academy of
Sciences Award for Initiatives in Research, research fellowships

from the Packard and Sloan Foundations, and teaching awards from
the Cornell Engineering College and Computer Science
Department.

0 O Kleinberg's research is centered around algorithms, particularly
those concerned with the structure of networks and information, and
with applications to information science, optimization, data

mining, and computational biology. His work on network analysis
using hubs and authorities helped form the foundation for the
current generation of Intern

Page 3



00004, tushu007.com
<O 00g>>

good

About the Authors

Preface

Introduction: Some Representative Problems

1.1 A First Problem: Stable Matching

1.2 Five Representative Problems

Solved Exercises

Exercises

Notes and Further Reading

Basics of Algorithm Ana/ys/s

2.1 Computational Tractability

2.2 Asymptotic Order of Growth

2.3 Implementing the Stable Matching Algorithm Using Lists and
Arrays

2.4 A Survey of Common Running Times

2.5 A More Complex Data Structure: Priority Queues
Solved Exercises

Exercises

Notes and Further Reading

3 Graphs

3.1 Basic Definitions and Applications

3.2 Graph Connectivity and Graph Traversal

3.3 Implementing Graph Traversal Using Queues and Stacks
3.4 Testing Bipaniteness: An Application of Breadth-First
Search

3.5 Connectivity in Directed Graphs

3.6 Directed Acyclic Graphs and Topological Ordering
Solved Exercises

Exercises

Notes and Further Reading

4 Greedy Algorithms

4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead
4.2 Scheduling to Minimize Lateness: An Exchange Argument
4.3 Optimal Caching: A More Complex Exchange Argument
4.4 Shortest Paths in a Graph

4.5 The Minimum Spanning Tree Problem

4.6 Implementing Kruskal's Algorithm: The Union-Find Data
Structure

4.7 Clustering

4.8 Huffman Codes and Data Compression

* 4.9 Minimum-Cost Arborescences: A Multi-Phase Greedy
Algorithm

Solved Exercises

Exercises

Notes and Further Reading

5 D/v/de and Corn/net

Page 4



00004, tushu007.com
<O 00g>>

5.1 A First Recurrence: The Mergesort Algorithm

5.2 Further Recurrence Relations

5.3 Counting Inversions

5.4 Finding the Closest Pair of Points

5.5 Integer Multiplication

5.6 Convolutions and the Fast Fourier Transform

Solved Exercises

Exercises

Notes and Further Reading

6 Dynamic Programming

6.1 Weighted Interval Scheduling: A Recursive Procedure
6.2 Principles of Dynamic Programming: Memoization or Iteration
over Subproblems

6.3 Segmented Least Squares: Multi-way Choices

6.4 Subset Sums and Knapsacks: Adding a Variable

6.5 RNA Secondary Structure: Dynamic Programming over
Intervals

6.6 Sequence Alignment

6.7 Sequence Alignment in Linear Space via Divide and Conquer
6.8 Shortest Paths in a Graph

6.9 Shortest Paths and Distance Vector Protocols

*6.10 Negative Cycles in a Graph

Solved Exercises

Exercises

Notes and Further Reading

Network Flora

7.1 The Maximum-Flow Problem and the Ford-Fulkerson Algorithm
7.2 Maximum Flows and Minimum Cuts in a Network

7.3 Choosing Good Augmenting Paths

* 7.4 The Preflow-Push Maximum-Flow Algorithm

7.5 A First Application: The Bipartite Matching Problem
7.6 Disjoint Paths in Directed and Undirected Graphs

7.7 Extensions to the Maximum-Flow Problem

7.8 Survey Design

7.9 Airline Scheduling

7.10 Image Segmentation

7.11 Project Selection

7.12 Baseball Elimination

*7.1.3 A Further Direction: Adding Costs to the Matching Problem
Solved Exercises

Exercises

Notes and Further Reading

NP and Computational Intractability

8.1 Polynomial-Time Reductions

8.2 Reductions via "Gadgets": The Safisfiability Problem

8.3 Efficient Certification and the Definition of NP

8.4 NP-Complete Problems

Page 5



00004, tushu007.com
<O 00g>>

8.5 Sequencing Problems

8.6 Partitioning Problems

8.7 Graph Coloring

8.8 Numerical Problems

8.9 Co-NP and the Asymmetry of NP

8.10 A Partial Taxonomy of Hard Problems

Solved Exercises

Exercises

Notes and Further Reading

9 PSPACE: A Class of Problems beyond NP

9.1 PSPACE

9.2 Some Hard Problems in PSPACE

9.3 Solving Quantified Problems and Games in Polynomial Space
9.4 Solving the Planning Problem in Polynomial Space

9.5 Proving Problems PSPACE-Complete

Solved Exercises

Exercises

Notes and Further Reading

10 Extending the Limits of Tractability

10.1 Finding Small Vertex Covers

10.2 Solving NP-Hard Problems on Trees

10.3 Coloring a Set of Circular Arcs

*10.4 Tree Decompositions of Graphs

*10.5 Constructing a Tree Decomposition

Solved Exercises

Exercises

Notes and Further Reading

11 Approximation Algorithms

11.1 Greedy Algorithms and Bounds on the Optimum: A Load Balancing
Problem

11.2 The Center Selection Problem

11.3 Set Cover: A General Greedy Heuristic

11.4 The Pricing Method: Vertex Cover

11.5 Maximization via the Pricing Method: The Disjoint Paths
Problem

11.6 Linear Programming and Rounding: An Application to Vertex
Cover

*11.7 Load Balancing Revisited: A More Advanced LP
Application

11.8 Arbitrarily Good Approximations: The Knapsack Problem
Solved Exercises

Exercises

Notes and Further Reading

Local Search

12.1 The Landscape of an Optimization Problem

12.2 The Metropolis Algorithm and Simulated Annealing

12.3 An Application of Local Search to Hopfield Neural

Page 6



00004, tushu007.com
<O QO00dn>>

Networks

12.4 Maximum-Cut Approximation via Local Search

12.5 Choosing a Neighbor Relation

12.6 Classification via Local Search

12.7 Best-Response Dynamics and Nash Equilibria

Solved Exercises

Exercises

Notes and Further Reading

Randomized Algorithms

13.1 A First Application: Contention Resolution

13.2 Finding the Global Minimum Cut

13.3 Random Variables and Their Expectations

13.4 A Randomized Approximation Algorithm for MAX 3-SAT
13.5 Randomized Divide and Conquer: Median-Finding and
Quicksort

13.6 Hashing: A Randomized Implementation of Dictionaries
13.7 Finding the Closest Pair of Points: A Randomized
Approach

13.8 Randomized Caching

13.9 Chernoff Bounds

13.10 Load Balancing

13.11 Packet Routing

13.12 Background: Some Basic Probability Definitions
Solved Exercises

Exercises

Notes and Further Reading

Epilogue: Algorithms That Run Forever

References

Index

Page 7



00004, tushu007.com
<O 00g>>

good

0000 OO0 25A MoreComplex Data Structure:Priority Queues Our primary goal in this book was
expressed at the outset of the chapter:we seek algorithms that improve qualitatively on brute-force search,and in
general we use polynomial-time solvability as the concrete formulation of this."pically,achieving a polynomial-time
solution to a nontrivial problem is not something that depends on fine-grained implementation details; rather,the
difference between exponential and polynomial is based on overcoming higher-level obstacles.Once one has an
efficient algorithm to solve a problem,however,it is often possible to achieve further improvements in running time
by being careful with the implementation details,and sometimes by using more complex data structures. Some
complex data structures are essentially tailored for use in a single kind of algorithm,while others are more generally
applicable.In this section,we describe one of the most broadly useful sophisticated data structures,the priority
queue.Priority queues will be useful when we describe how to implement some of the graph algorithms developed
later in the book.For our purposes here,it is a useful illustration of the analysis of a data structure that,unlike lists
and arrays,must perform some nontrivial processing,each time it is invoked. The Problem In the implementation of
the Stable Matching algorithm in Section 2.3,we discussed the need to maintain a dynamically changing set S (such
as the set of all free men in that case).In such situations,we want to be able to add elements to and delete elements
from the set S,and we want to be able to select an element from S when the algorithm calls for it. A priority queue is
designed for applications in which elements have a priority value,or key,and each time we need to select an element
from S,we want to take the one with highest priority.

Page 8



00004, tushu007.com
<O QO00dn>>

goon

oooooo@uoo)yoooboobobobobobooooboooooooboboboboo

goobooooo
goobob@oo)yoboboboouoobooouoooobobobobooooooooboog

gobbobbougooogobobo

Page 9



00004, tushu007.com
<O QO00dn>>

goon
gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 10



