出版時間:2006-2 出版社:清華大學(xué)出版社 作者:孫毅等 頁數(shù):257
Tag標(biāo)簽:無
內(nèi)容概要
本書分上、下冊. 上冊內(nèi)容包括函數(shù)、極限與連續(xù)、導(dǎo)數(shù)與微分、微分中值定理與導(dǎo)數(shù)應(yīng)用、不定積分和定積分及其應(yīng)用.下冊內(nèi)容包括向量代數(shù)與空間解析幾何、多元函數(shù)微分學(xué)、重積分、無窮級數(shù)、微分方程和差分方程. 與本書(上、下冊) 配套的有習(xí)題課教材、電子教案. 該套教材吸取了現(xiàn)行教學(xué)改革中一些成功的舉措, 總結(jié)了作者在教學(xué)科研方面的研究成果, 注重數(shù)學(xué)在經(jīng)濟管理領(lǐng)域中的應(yīng)用, 選用大量有關(guān)的例題與習(xí)題;具有結(jié)構(gòu)嚴(yán)謹(jǐn)、邏輯清楚、循序漸進(jìn)、結(jié)合實際等特點.可作為高等學(xué)校經(jīng)濟、管理、金融及相關(guān)專業(yè)的教材或教學(xué)參考書.
書籍目錄
第1章 向量代數(shù)與空間解析幾何 1.1 向量及其運算 1.1.1 空間直角坐標(biāo)系 1.1.2 向量的概念 1.1.3 向量的線性運算 1.1.4 向量的坐標(biāo) 1.1.5 向量的乘積運算 習(xí)題1.1 1.2 平面與直線 1.2.1 平面 1.2.2 直線 習(xí)題1.2 1.3 曲面與曲線 1.3.1 柱面和旋轉(zhuǎn)曲面 1.3.2 二次曲面 1.3.3 曲線方程 習(xí)題1.3 總習(xí)題1 第2章 多元函數(shù)微分學(xué) 2.1 多元函數(shù)的基本概念 2.1.1 平面點集 2.1.2 多元函數(shù) 2.1.3 多元函數(shù)的極限和連續(xù)性 習(xí)題2.1 2.2 偏導(dǎo)數(shù)和全微分 2.2.1 偏導(dǎo)數(shù) 2.2.2 高階偏導(dǎo)數(shù) 2.2.3 偏導(dǎo)數(shù)在經(jīng)濟分析中的應(yīng)用 2.2.4 全微分 習(xí)題2.2 2.3 復(fù)合函數(shù)與隱函數(shù)微分法 2.3.1 復(fù)合函數(shù)的微分法 2.3.2 隱函數(shù)的微分法 習(xí)題2.3 2.4 多元函數(shù)的極值問題 2.4.1 多元函數(shù)的極值問題 2.4.2 條件極值問題 習(xí)題2.4 總習(xí)題2 第3章 重積分 3.1 二重積分 3.1.1 二重積分的概念 3.1.2 二重積分的性質(zhì) 3.1.3 在直角坐標(biāo)系下計算二重積分 3.1.4 在極坐標(biāo)系下計算二重積分 3.1.5 反常二重積分 習(xí)題3.1 3.2 三重積分 3.2.1 三重積分的概念和性質(zhì) 3.2.2 在直角坐標(biāo)系下計算三重積分 3.2.3 在柱面坐標(biāo)系和球面坐標(biāo)系下計算三重積分 習(xí)題3.2 總習(xí)題3 第4章 無窮級數(shù) 4.1 常數(shù)項級數(shù)及性質(zhì) 4.1.1 常數(shù)項級數(shù)的概念 4.1.2 無窮級數(shù)的基本性質(zhì) 習(xí)題4.1 4.2 常數(shù)項級數(shù)收斂性的判別法 4.2.1 正項級數(shù)及其判別法 4.2.2 交錯級數(shù)及其判別法 4.2.3 絕對收斂與條件收斂 習(xí)題4.2 4.3 函數(shù)項級數(shù) 4.4 冪級數(shù) 4.4.1 冪級數(shù)及其收斂域 4.4.2 冪級數(shù)的運算與性質(zhì) 習(xí)題4.4 4.5 函數(shù)的冪級數(shù)展開 4.5.1 Taylor級數(shù) …… 第5章 微分方程 第6章 差分方程 習(xí)題參考答案 參考文獻(xiàn)
圖書封面
圖書標(biāo)簽Tags
無
評論、評分、閱讀與下載