應(yīng)用隨機(jī)過(guò)程

出版時(shí)間:2011-2  出版社:人民郵電出版社  作者:羅斯,Sheldon M. Ross  頁(yè)數(shù):784  
Tag標(biāo)簽:無(wú)  

內(nèi)容概要

《應(yīng)用隨機(jī)過(guò)程:概率模型導(dǎo)論(英文版·第10版)》由Sheldon
M.Ross所著,敘述深入淺出,涉及面廣。主要內(nèi)容有隨機(jī)變量、條件概率及條件期望、離散及連續(xù)馬爾可夫鏈、指數(shù)分布、泊松過(guò)程、布朗運(yùn)動(dòng)及平穩(wěn)過(guò)程、更新理論及排隊(duì)論等;也包括了隨機(jī)過(guò)程在物理、生物、運(yùn)籌、網(wǎng)絡(luò)、遺傳、經(jīng)濟(jì)、保險(xiǎn)、金融及可靠性中的應(yīng)用。特別是有關(guān)隨機(jī)模擬的內(nèi)容,給隨機(jī)系統(tǒng)運(yùn)行的模擬計(jì)算提供了有力的工具。除正文外,《應(yīng)用隨機(jī)過(guò)程——概率模型導(dǎo)論(第10版:英文版)》有約700道習(xí)題,其中帶星號(hào)的習(xí)題還提供了解答。
《應(yīng)用隨機(jī)過(guò)程:概率模型導(dǎo)論(英文版·第10版)》可作為概率論與統(tǒng)計(jì)、計(jì)算機(jī)科學(xué)、保險(xiǎn)學(xué)、物理學(xué)、社會(huì)科學(xué)、生命科學(xué)、管理科學(xué)與工程學(xué)等專業(yè)的隨機(jī)過(guò)程基礎(chǔ)課教材。

作者簡(jiǎn)介

羅斯,Sheldon
M.Ross國(guó)際知名概率與統(tǒng)計(jì)學(xué)家,南加州大學(xué)工業(yè)工程與運(yùn)籌系系主任。1968年博士畢業(yè)于斯坦福大學(xué)統(tǒng)計(jì)系,曾在加州大學(xué)伯克利分校任教多年。研究領(lǐng)域包括:隨機(jī)模型.仿真模擬、統(tǒng)計(jì)分析、金融數(shù)學(xué)等:Ross教授著述頗豐,他的多種暢銷數(shù)學(xué)和統(tǒng)計(jì)教材均產(chǎn)生了世界性的影響,如Simulation(《統(tǒng)計(jì)模擬》)、Introduction
to Probability Models(《應(yīng)用隨機(jī)過(guò)程:概率模型導(dǎo)論》)等(均由人民郵電出版社出版)。

書(shū)籍目錄

1 introduction to probability theory 1
1.1 introduction 1
1.2 sample space and events 1
1.3 probabilities defined on events 4
1.4 conditional probabilities 7
1.5 independent events 10
1.6 bayes' formula 12
exercises 15
references 20
2 random variables 21
2.1 random variables 21
2.2 discrete random variables 25
2.2.1 the bernoulli random variable
26
2.2.2 the binomial random variable 27
2.2.3 the geometric random variable
29
2.2.4 the poisson random variable 30
2.3 continuous random variables 31
2.3.1 the uniform random variable 32
2.3.2 exponential random variables 34
2.3.3 gamma random variables 34
2.3.4 normal random variables 34
2.4 expectation of a random variable 36
2.4.1 the discrete case 36
2.4.2 the continuous case 38
2.4.3 expectation of a function of a random
variable 40
2.5 jointly distributed random variables 44
2.5.1 joint distribution functions 44
2.5.2 independent random variables 48
2.5.3 covariance and variance of sums of
random variables 50
2.5.4 joint probability distribution of
functions of randomvariables 59
2.6 moment generating functions 62
2.6.1 the joint distribution of the sample
mean and sample variance from a normal population 71
2.7 the distribution of the number of events that occur
74
2.8 limit theorems 77
2.9 stochastic processes 84
exercises 86
references 95
3 conditional probability and conditional expectation 97
3.1 introduction 97
3.2 the discrete case 97
3.3 the continuous case 102
3.4 computing expectations by conditioning 106
3.4.1 computing variances by conditioning
117
3.5 computing probabilities by conditioning 122
3.6 some applications 140
3.6.1 a list model 140
3.6.2 a random graph 141
3.6.3 uniform priors, polya's urn model,
and bose-einstein statistics 149
3.6.4 mean time for patterns 153
3.6.5 the k-record values of discrete
random variables 157
3.6.6 left skip free random walks 160
3.7 an identity for compound random variables 166
3.7.1 poisson compounding distribution
169
3.7.2 binomial compounding distribution
171
3.7.3 a compounding distribution related to
the negative binomial 172
exercises 173
4 markov chains 191
4.1 introduction 191
4.2 chapman-kolmogorov equations 195
4.3 classification of states 204
4.4 limiting probabilities 214
4.5 some applications 230
4.5.1 the gambler's ruin problem 230
4.5.2 a model for algorithmic efficiency
234
4.5.3 using a random walk to analyze a
probabilistic algorithm for the satisfiability problem 237
4.6 mean time spent in transient states 243
4.7 branching processes 245
4.8 time reversible markov chains 249
4.9 markov chain monte carlo methods 260
4.10 markov decision processes 265
4.11 hidden markov chains 269
4.11.1 predicting the states 273
exercises 275
references 290
5 the exponential distribution and the poisson process 291
5.1 introduction 291
5.2 the exponential distribution 292
5.2.1 definition 292
5.2.2 properties of the exponential
distribution 294
5.2.3 further properties of the exponential
distribution 301
5.2.4 convolutions of exponential random
variables 308
5.3 the poisson process 312
5.3.1 counting processes 312
5.3.2 definition of the poisson process
313
5.3.3 interarrival and waiting time
distributions 316
5.3.4 further properties of poisson
processes 319
5.3.5 conditional distribution of the
arrival times 325
5.3.6 estimating software reliability
336
5.4 generalizations of the poisson process 339
5.4.1 nonhomogeneous poisson process
339
5.4.2 compound poisson process 346
5.4.3 conditional or mixed poisson
processes 351
exercises 354
references 370
6 continuous-time markov chains 371
6.1 introduction 371
6.2 continuous-time markov chains 372
6.3 birth and death processes 374
6.4 the transition probability function pij (t)
381
6.5 limiting probabilities 390
6.6 time reversibility 397
6.7 uniformization 406
6.8 computing the transition probabilities 409
exercises 412
references 419
7 renewal theory and its applications 421
7.1 introduction 421
7.2 distribution of n(t) 423
7.3 limit theorems and their applications 427
7.4 renewal reward processes 439
7.5 regenerative processes 447
7.5.1 alternating renewal processes
450
7.6 semi-markov processes 457
7.7 the inspection paradox 460
7.8 computing the renewal function 463
7.9 applications to patterns 466
7.9.1 patterns of discrete random variables
467
7.9.2 the expected time to a maximal run of
distinct values 474
7.9.3 increasing runs of continuous random
variables 476
7.10 the insurance ruin problem 478
exercises 484
references 495
8 queueing theory 497
8.1 introduction 497
8.2 preliminaries 498
8.2.1 cost equations 499
8.2.2 steady-state probabilities 500
8.3 exponential models 502
8.3.1 a single-server exponential queueing
system 502
8.3.2 a single-server exponential queueing
system having finite capacity 511
8.3.3 birth and death queueing models
517
8.3.4 a shoe shine shop 522
8.3.5 a queueing system with bulk service
524
8.4 network of queues 527
8.4.1 open systems 527
8.4.2 closed systems 532
8.5 the system m/g/1 538
8.5.1 preliminaries: work and another cost
identity 538
8.5.2 application of work to m/g/1
539
8.5.3 busy periods 540
8.6 variations on the m/g/1 541
8.6.1 the m/g/1 with random-sized batch
arrivals 541
8.6.2 priority queues 543
8.6.3 an m/g/1 optimization example
546
8.6.4 the m/g/1 queue with server breakdown
550
8.7 the model g/m/1 553
8.7.1 the g/m/1 busy and idle periods
558
8.8 a finite source model 559
8.9 multiserver queues 562
8.9.1 erlang's loss system 563
8.9.2 the m/m/k queue 564
8.9.3 the g/m/k queue 565
8.9.4 the m/g/k queue 567
exercises 568
references 578
9 reliability theory 579
9.1 introduction 579
9.2 structure functions 580
9.2.1 minimal path and minimal cut sets
582
9.3 reliability of systems of independent components
586
9.4 bounds on the reliability function 590
9.4.1 method of inclusion and exclusion
591
9.4.2 second method for obtaining bounds on
r(p) 600
9.5 system life as a function of component lives
602
9.6 expected system lifetime 610
9.6.1 an upper bound on the expected life
of a parallel system 614
9.7 systems with repair 616
9.7.1 a series model with suspended
animation 620
exercises 623
references 629
10 brownian motion and stationary processes 631
10.1 brownian motion 631
10.2 hitting times, maximum variable, and the gambler's
ruin problem 635
10.3 variations on brownian motion 636
10.3.1 brownian motion with drift 636
10.3.2 geometric brownian motion 636
10.4 pricing stock options 638
10.4.1 an example in options pricing
638
10.4.2 the arbitrage theorem 640
10.4.3 the black-scholes option pricing
formula 644
10.5 white noise 649
10.6 gaussian processes 651
10.7 stationary and weakly stationary processes
654
10.8 harmonic analysis of weakly stationary processes
659
exercises 661
references 665
11 simulation 667
11.1 introduction 667
11.2 general techniques for simulating continuous
random variables 672
11.2.1 the inverse transformation method
672
11.2.2 the rejection method 673
11.2.3 the hazard rate method 677
11.3 special techniques for simulating continuous
random variables 680
11.3.1 the normal distribution 680
11.3.2 the gamma distribution 684
11.3.3 the chi-squared distribution
684
11.3.4 the beta (n, m) distribution
685
11.3.5 the exponential distribution-the von
neumann algorithm 686
11.4 simulating from discrete distributions 688
11.4.1 the alias method 691
11.5 stochastic processes 696
11.5.1 simulating a nonhomogeneous poisson
process 697
11.5.2 simulating a two-dimensional poisson
process 703
11.6 variance reduction techniques 706
11.6.1 use of antithetic variables
707
11.6.2 variance reduction by conditioning
710
11.6.3 control variates 715
11.6.4 importance sampling 717
11.7 determining the number of runs 722
11.8 generating from the stationary distribution of a
markov chain 723
11.8.1 coupling from the past 723
11.8.2 another approach 725
exercises 726
references 734
Appendix: solutions to starred exercises 735
Index 775

章節(jié)摘錄

版權(quán)頁(yè):插圖:

媒體關(guān)注與評(píng)論

“本書(shū)的一大特色是實(shí)例豐富,內(nèi)容涉及多個(gè)學(xué)科,尤其是精算學(xué)……相信任何有上進(jìn)心的讀者都會(huì)對(duì)此愛(ài)不釋手?!薄  狫ean LeMaire,賓夕法尼亞大學(xué)沃頓商學(xué)院“書(shū)中的例子和習(xí)題非常出色,作者不僅提供了非?;镜睦?,以闡述基礎(chǔ)概念和公式,還從盡可能多的學(xué)科中提煉出許多較高級(jí)的實(shí)例,極具參考價(jià)值?!薄  狹att Carlton,加州州立理工大學(xué)(Cal Poly)

編輯推薦

《應(yīng)用隨機(jī)過(guò)程:概率模型導(dǎo)論(英文版·第10版)》:北美精算師考試制定參考書(shū)《應(yīng)用隨機(jī)過(guò)程:概率模型導(dǎo)論(英文版·第10版)》是國(guó)際知名統(tǒng)計(jì)學(xué)家Sheldon M,Ross所著的關(guān)于基礎(chǔ)概率理論和隨機(jī)過(guò)程的經(jīng)典教材。被加州大學(xué)伯克利分校,哥倫比亞大學(xué)、普度大學(xué)、密歇根大學(xué)、俄勒岡州立大學(xué),華盛頓大學(xué)等眾多國(guó)外知名大學(xué)所采用。與其他隨機(jī)過(guò)程教材相比?!稇?yīng)用隨機(jī)過(guò)程:概率模型導(dǎo)論(英文版·第10版)》非常強(qiáng)調(diào)實(shí)踐性。內(nèi)含極其豐富的例子和習(xí)題,涵蓋了眾多學(xué)科的各種應(yīng)用。作者富于啟發(fā)而又不失嚴(yán)密性的敘述方式,有助于使讀者建立概率思維方式,培養(yǎng)對(duì)概率理論、隨機(jī)過(guò)程的直觀感覺(jué)。對(duì)那些需要將概率理論應(yīng)用于精算學(xué),運(yùn)籌學(xué),物理學(xué),工程學(xué),計(jì)算機(jī)科學(xué)。管理學(xué)和社會(huì)科學(xué)的讀者而言,《應(yīng)用隨機(jī)過(guò)程:概率模型導(dǎo)論(英文版·第10版)》是一本極好的教材或參考書(shū)?!稇?yīng)用隨機(jī)過(guò)程:概率模型導(dǎo)論(英文版·第10版)》特色秉承作者招牌式的深入淺出,娓娓道來(lái)的寫(xiě)作風(fēng)格。增加了關(guān)于不帶左跳的隨機(jī)徘徊、生滅排隊(duì)模型、馬爾可夫鏈和保險(xiǎn)破產(chǎn)模型等方面的重要內(nèi)容。增加了新的例子和習(xí)題,更加注重強(qiáng)化讀者的概率直觀。

圖書(shū)封面

圖書(shū)標(biāo)簽Tags

無(wú)

評(píng)論、評(píng)分、閱讀與下載


    應(yīng)用隨機(jī)過(guò)程 PDF格式下載


用戶評(píng)論 (總計(jì)33條)

 
 

  •   隨機(jī)過(guò)程教材的經(jīng)典之作,值得一看,而且要多看幾遍
  •   Ross的概率書(shū)都很經(jīng)典,能夠出10版的書(shū)肯定不一般
  •   隨機(jī)過(guò)程隨機(jī)過(guò)。。。
  •   本書(shū)淺顯易懂,數(shù)學(xué)上基本上不需要復(fù)雜的工具。
  •   剛剛看了兩章,發(fā)現(xiàn)里面的例子還是不錯(cuò)的,喜歡。
  •   例子很多,易于理解,印刷也很清晰
  •   還沒(méi)看內(nèi)容,標(biāo)題翻譯的有點(diǎn)怪。
  •   理論性強(qiáng),質(zhì)量很好
  •   剖析比較詳細(xì)
  •   本學(xué)期的討論班就用它了,不錯(cuò)的書(shū)
  •   比較好懂的英文,不枯燥
  •   算法精妙啊,快來(lái)看。
  •   書(shū)完整無(wú)缺,印刷清晰
  •   書(shū)還不錯(cuò)~雖然木有買的另一本紙質(zhì)好~不是新聞紙
  •   很實(shí)用,但包裝有破損
  •   作為一本全英文圖書(shū),我由于工作忙只看到第四章??傮w感覺(jué),本書(shū)實(shí)例確實(shí)多,作者也確實(shí)把我們當(dāng)傻子教的,不厭其煩。不過(guò)也有好多地方要在網(wǎng)上查一些概念。推薦有自學(xué)能力的人去讀。
  •   10個(gè)字的規(guī)定真討厭
  •   書(shū)的上面和側(cè)面都是臟臟的。。。哎1
  •   書(shū)還不錯(cuò),不過(guò)書(shū)本最后爛了幾頁(yè),其他地方也是有爛的
  •   Ross寫(xiě)書(shū)就是這個(gè)特點(diǎn)。清楚,例子很多
  •   Ross的經(jīng)典名著,內(nèi)容由淺入深,例題講解詳細(xì)易懂,課后練習(xí)題很多,也有習(xí)題答案。特別適合于學(xué)習(xí)概率應(yīng)用者入門!值得稱道的是,這個(gè)版無(wú)論是從印刷、排版、紙張都是非常好,是我見(jiàn)到影印書(shū)中質(zhì)量最好的,讓人愛(ài)不釋手?。‰m然價(jià)格也貴,但沖著作者和這么好的印刷質(zhì)量,還是掏了銀子拿下!
  •   書(shū)是經(jīng)典,質(zhì)量不錯(cuò),只是送貨時(shí)間有點(diǎn)長(zhǎng)~
  •   內(nèi)容很豐富,有一定難度,商品還可以,應(yīng)該是正版的
  •   書(shū)的質(zhì)量很好內(nèi)容就不用說(shuō)了
  •   經(jīng)典書(shū)籍還用多說(shuō)?偶了
  •   和原版教材完全一樣,很好!
  •   呃,買了兩本書(shū),卓越賣的這本第二天就到了。 China-Pub那本還在等待中,已經(jīng)5天了.
  •   書(shū)收到還不錯(cuò),網(wǎng)上買書(shū)就是比在書(shū)店買便宜,就是郵的太慢。
  •   能出到10版的應(yīng)該是經(jīng)典
  •   一本可以做十版的書(shū)足以見(jiàn)得它的經(jīng)典
  •   書(shū)質(zhì)量看起來(lái)還好,遇到打折,還不錯(cuò)
  •   好書(shū)!無(wú)需多說(shuō)
  •   暫未細(xì)讀,但是翻過(guò)才買的
 

250萬(wàn)本中文圖書(shū)簡(jiǎn)介、評(píng)論、評(píng)分,PDF格式免費(fèi)下載。 第一圖書(shū)網(wǎng) 手機(jī)版

京ICP備13047387號(hào)-7