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0 O O O The service asks each Net for assigned Rules] [ , and then writes them fully expanded.[] Of course, if
there were only one operation [ as in the example[] , the script-based approach might be just as practical. But in
reality, there were 20 or more. The MODEL-DRIVEN DESIGN scales easily and can include constraints on
combining rules and other enhancements.The second design also accommaodates testing. Its components have
well-defined interfaces that can be unit-tested. The only way to test the script is to do an end-to-end file-in/file-out
comparison.Keep in mind that such a design does not emerge in a single step. It would take several iterations of
refactoring and knowledge crunching to distill the important concepts of the domain into a simple, incisive
model.Letting the Bones Show: Why Models Matter to UsersIn theory, perhaps, you could present a user with any
view of a system, regardless of what lies beneath. But in practice, a mismatch causes confusion at best——bugs at
worst. Consider a very simple example of how users are misled by superimposed models of book- marks for Web
sites in current releases of Microsoft Internet Explorer.
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