000 0O, tushu007.com
<OQO00d0O0mn>>

gobooo

Jdd<<Oogoogd>>
1300 ISBNUO O 0 9787115224071
1000 ISBNO O 10 7115224072
00 odoo201004
gooooboooogooao

O O O Eric Evans

000529

guooobobbogooooopbrbbbggoooobbbgooooon

00000000 http://www.tushu007.com

Page 1

000 0O, tushu007.com
<OQO00d0O0mn>>

goon

gobbobbbuodggooobbbbbuoooogobbobbboooooobobbobboooog
gobbobbbougooobobbobooooooon
gobbobbbuougooobobobbbuooogobooooo
gobbobbbougoogoobobbiodoooooboobouooooon
gobboobbbuodgoguobobobbuodoodobobobobooooooobobboougya
gobboobbboogogobbobbidoodobobobboooooobobobbooga
gobbobbboogoooboboobbbooooooobooo
gobbobobbodooooboboobbodoooooboobbooooooobobobbooaa
gobobooobboodaad
gobboobobbooooooboboobbodoooobobobbtooooooobobobboooa
gobobobobbooooooboboobbtooooooobobbooooooonbbobboooa
goon

Page 2

000 0O, tushu007.com
<OQO00d0O0mn>>

goon

EricEvans0 D00 00000000 O0ODomainLanguagel D 000000 0ODOODOOOOOODOO
gobooo
gobbobbbugooobobbobbouoodobbobbuooogoboobobbougg
gxojsoiboooboudooogobobbodgoooobobbbouoooooonbon
gobbobbooogaggobobo

gobbobobboogooobobbobbboooooon

Page 3

000 0O, tushu007.com
<OO00Ogdods>>

good

Part | Putting the Domain Model to Work 1 Chapter 1: Crunching Knowledge 7 Ingredients of Effective Modeling
12 Knowledge Crunching 13 Continuous Learning 15 Knowledge-Rich Design 17 Deep Models 20 Chapter 2:
Communication and the Use of Language 23 UBIQUITOUS LANGUAGE 24 Modeling Out Loud 30 One Team,
One Language 32 Documents and Diagrams 35 Written Design Documents 37 Executable Bedrock 40 Explanatory
Models 41 Chapter 3: Binding Model and Implementation 45 MODEL-DRIVEN DESIGN 47 Modeling
Paradigms and Tool Support 50 Letting the Bones Show: Why Models Matter to Users 57 HANDS-ON
MODELERS 60 Part 1l The Building Blocks of a Model-Driven Design 63 Chapter 4: Isolating the Domain 67
LAYERED ARCHITECTURE 68 Relating the Layers 72 Architectural Frameworks 74 The Domain Layer Is
Where the Model Lives 75 THE SMART Ul “ ANTI-PATTERN” 76 Other Kinds of Isolation 79 Chapter 5: A
Model Expressed in Software 81 Associations 82 ENTITIES (A.K.A. REFERENCE OBJECTS) 89 Modeling
ENTITIES 93 Designing the Identity Operation 94 VALUE OBJECTS 97 Designing VALUE OBJECTS 99
Designing Associations That Involve VALUE OBJECTS 102 SERVICES 104 SERVICES and the Isolated Domain
Layer 106 Granularity 108 Access to SERVICES 108 MODULES (A.K.A. PACKAGES) 109 Agile MODULES 111
The Pitfalls of Infrastructure-Driven Packaging 112 Modeling Paradigms 116 Why the Object Paradigm
Predominates 116 Nonobjects in an Object World 119 Sticking with MODEL-DRIVEN DESIGN When Mixing
Paradigms 120 Chapter 6: The Life Cycle of a Domain Object 123 AGGREGATES 125 FACTORIES 136
Choosing FACTORIES and Their Sites 139 When a Constructor Is All You Need 141 Designing the Interface 143
Where Does Invariant Logic Go? 144 ENTITY FACTORIES Versus VALUE OBJECT FACTORIES 144
Reconstituting Stored Objects 145 REPOSITORIES 147 Querying a REPOSITORY 152 Client Code Ignores
REPOSITORY Implementation; Developers Do Not 154 Implementing a REPOSITORY 155 Working Within
Your Frameworks 156 The Relationship with FACTORIES 157 Designing Objects for Relational Databases 159
Chapter 7: Using the Language: An Extended Example 163 Introducing the Cargo Shipping System 163 Isolating
the Domain: Introducing the Applications 166 Distinguishing ENTITIES and VALUE OBJECTS 167 Role and
Other Attributes 168 Designing Associations in the Shipping Domain 169 AGGREGATE Boundaries 170 Selecting
REPOSITORIES 172 Walking Through Scenarios 173 Sample Application Feature: Changing the Destination of a
Cargo 173 Sample Application Feature: Repeat Business 173 Object Creation 174 FACTORIES and Constructors
for Cargo 174 Adding a Handling Event 175 Pause for Refactoring: An Alternative Design of the Cargo
AGGREGATE 177 MODULES in the Shipping Model 179 Introducing a New Feature: Allocation Checking 181
Connecting the Two Systems 182 Enhancing the Model: Segmenting the Business 183 Performance Tuning 185 A
Final Look 186 Part 111 Refactoring Toward Deeper Insight 187 Chapter 8: Breakthrough 193 Story of a
Breakthrough 194 A Decent Model, and Yet . . . 194 The Breakthrough 196 A Deeper Model 198 A Sobering
Decision 199 The Payoff 200 Opportunities 201 Focus on Basics 201 Epilogue: A Cascade of New Insights 202
Chapter 9: Making Implicit Concepts Explicit 205 Digging Out Concepts 206 Listen to Language 206 Scrutinize
Awkwardness 210 Contemplate Contradictions 216 Read the Book 217 Try, Try Again 219 How to Model Less
Obvious Kinds of Concepts 219 Explicit Constraints 220 Processes as Domain Objects 222 SPECIFICATION 224
Applying and Implementing SPECIFICATION 227 Chapter 10: Supple Design 243 INTENTION-REVEALING
INTERFACES 246 SIDE-EFFECT-FREE FUNCTIONS 250 ASSERTIONS 255 CONCEPTUAL CONTOURS
260 STANDALONE CLASSES 265 CLOSURE OF OPERATIONS 268 Declarative Design 270 Domain-Specific
Languages 272 A Declarative Style of Design 273 Extending SPECIFICATIONS in a Declarative Style 273 Angles of
Attack 282 Carve Off Subdomains 283 Draw on Established Formalisms, When You Can 283 Chapter 11:
Applying Analysis Patterns 293 Chapter 12: Relating Design Patterns to the Model 309 STRATEGY (A.K.A.
POLICY) 311 COMPOSITE 315 Why Not FLYWEIGHT? 320 Chapter 13: Refactoring Toward Deeper Insight
321 Initiation 321 Exploration Teams 322 Prior Art 323 A Design for Developers 324 Timing 324 Crisis as
Opportunity 325 Part IV Strategic Design 327 Chapter 14: Maintaining Model Integrity 331 BOUNDED
CONTEXT 335 Recognizing Splinters Within aBOUNDED CONTEXT 339 CONTINUOUS INTEGRATION

Page 4

000 0O, tushu007.com
<OO00Ogdods>>

341 CONTEXT MAP 344 Testing at the CONTEXT Boundaries 351 Organizing and Documenting CONTEXT
MAPS 351 Relationships Between BOUNDED CONTEXTS 352 SHARED KERNEL 354
CUSTOMER/SUPPLIER DEVELOPMENT TEAMS 356 CONFORMIST 361 ANTICORRUPTION LAYER
364 Designing the Interface of the ANTICORRUPTION LAYER 366 Implementing the ANTICORRUPTION
LAYER 366 A Cautionary Tale 370 SEPARATE WAYS 371 OPEN HOST SERVICE 374 PUBLISHED
LANGUAGE 375 Unifying an Elephant 378 Choosing Your Model Context Strategy 381 Team Decision or
Higher 382 Putting Ourselves in Context 382 Transforming Boundaries 382 Accepting That Which We Cannot
Change: Delineating the External Systems 383 Relationships with the External Systems 384 The System Under
Design 385 Catering to Special Needs with Distinct Models 386 Deployment 387 The Trade-off 388 When Your
Project Is Already Under Way 388 Transformations 389 Merging CONTEXTS: SEPARATE WAYS ? SHARED
KERNEL 389 Merging CONTEXTS: SHARED KERNEL ? CONTINUOUS INTEGRATION 391 Phasing Out a
Legacy System 393 OPEN HOST SERVICE ? PUBLISHED LANGUAGE 394 Chapter 15: Distillation 397 CORE
DOMAIN 400 Choosing the CORE 402 Who Does the Work? 403 An Escalation of Distillations 404 GENERIC
SUBDOMAINS 406 Generic Doesn’ t Mean Reusable 412 Project Risk Management 413 DOMAIN VISION
STATEMENT 415 HIGHLIGHTED CORE 417 The Distillation Document 418 The Flagged CORE 419 The
Distillation Document as Process Tool 420 COHESIVE MECHANISMS 422 GENERIC SUBDOMAIN Versus
COHESIVE MECHANISM 424 When a MECHANISM Is Part of the CORE DOMAIN 425 Distilling to a
Declarative Style 426 SEGREGATED CORE 428 The Costs of Creating a SEGREGATED CORE 429 Evolving
Team Decision 430 ABSTRACT CORE 435 Deep Models Distill 436 Choosing Refactoring Targets 437 Chapter
16: Large-Scale Structure 439 EVOLVING ORDER 444 SYSTEM METAPHOR 447 The “ Naive Metaphor”
and Why We Don’ t Need It 448 RESPONSIBILITY LAYERS 450 Choosing Appropriate Layers 460
KNOWLEDGE LEVEL 465 PLUGGABLE COMPONENT FRAMEWORK 475 How Restrictive Should a
Structure Be? 480 Refactoring Toward a Fitting Structure 481 Minimalism 481 Communication and Self-Discipline
482 Restructuring Yields Supple Design 482 Distillation Lightens the Load 483 Chapter 17: Bringing the Strategy
Together 485 Combining Large-Scale Structures and BOUNDED CONTEXTS 485 Combining Large-Scale
Structures and Distillation 488 Assessment First 490 Who Sets the Strategy? 490 Emergent Structure from
Application Development 491 A Customer-Focused Architecture Team 492 Six Essentials for Strategic Design
Decision Making 492 The Same Goes for the Technical Frameworks 495 Beware the Master Plan 496 Conclusion
499 Appendix: The Use of Patterns in This Book 507 Glossary 511 References 515 Photo Credits 517 Index 519

Page 5

000 0O, tushu007.com
<OQO00d0O0mn>>

good

0 O O O The service asks each Net for assigned Rules] [, and then writes them fully expanded.[] Of course, if
there were only one operation [as in the example[] , the script-based approach might be just as practical. But in
reality, there were 20 or more. The MODEL-DRIVEN DESIGN scales easily and can include constraints on
combining rules and other enhancements.The second design also accommaodates testing. Its components have
well-defined interfaces that can be unit-tested. The only way to test the script is to do an end-to-end file-in/file-out
comparison.Keep in mind that such a design does not emerge in a single step. It would take several iterations of
refactoring and knowledge crunching to distill the important concepts of the domain into a simple, incisive
model.Letting the Bones Show: Why Models Matter to UsersIn theory, perhaps, you could present a user with any
view of a system, regardless of what lies beneath. But in practice, a mismatch causes confusion at best——bugs at
worst. Consider a very simple example of how users are misled by superimposed models of book- marks for Web
sites in current releases of Microsoft Internet Explorer.

Page 6

000 0O, tushu007.com
<OQO00d0O0mn>>

gobooooo

“0J0000DO0DOO0DOoDOooOOoooOooOOoon

" O0—-KerltBeck DO DO ODOODOODOO

OO0000000" eMrcd0D0D00O00OD0OO0ODOO0OD00OO00O0ODOODODOODOODOODOODOOOOO0
OO0oo0oooooo

EicCO0000000000DOODOODOO0ODOODOO0O00000DO0ODOOn

OO0oo0oooooo

" O00——RahlohnsonO0 OO0 O0O0O0O0O* OO0O0OO0O0OOOODOODODOODOOOOOOOO
OO0000000000DbOOoDoOooOooOoog

" O0——WardCunningham OO O OO0 O0O00O0O0OO0OODO" EncEvarlsC 0000 OOOOO0OO
oooooo

OO00000000D0OO0DOOoooooooooooon
OO000000000000D00D000O00o0oo0oDo0oo0ooooooooDooOoooog

" O O ——Dave Collirls Designing Object-Oriented User Interfaces] O O “ Eric0 00000000 DO0O
l
gbodotdooooobooootdodooooooboooododoooooooouodot
guodoooooooodgod

" [0 O ——Luke Hollmann Beyond Software Architecture] [[

Page 7

000 0O, tushu007.com
<OQO00d0O0mn>>

goon
gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 8

