出版時間:2009-8 出版社:人民郵電出版社 作者:卡梅倫 頁數(shù):355
Tag標(biāo)簽:無
前言
If anything at all can be deduced from the two quotations at the top of this page,perhaps it is this: Combinatorics is an essential part of the human spirit; but it isa all.cult subject for the abstract, axiomatising Bourbaki school of mathematics tocomprehend. Nevertheless, the advent of computers and electronic communicationshave made it a more important subject than ever. This is a textbook on combinatorics. Its based on my experience of more thantwenty years of research and, more specifically, on teaching a course at Queen Maryand Westfield College, University of London, since 1986. The book presupposessome mathematical knowledge. The first part (Chapters 2-11) could be studied bya second-year British undergraduate; but I hope that more advanced students willfind something interesting here too (especially in the Projects, which may be skippedwithout much loss by beginners). The second half (Chapters 12-20) is in a morecondensed style, more suited to postgraduate students. I am grateful to many colleagues, friends and students for all kinds of contribu-tions, some of which are acknowledged in the text; and to Neill Cameron, for theillustration on p. 128. I have not provided a table of dependencies between chapters. Everything isconnected; but combinatorics is, by nature, broad rather than deep. The moreimportant connections are indicated at the start of the chapters.
內(nèi)容概要
這本優(yōu)秀的組合數(shù)學(xué)教材是作者20多年研究和教學(xué)經(jīng)驗(yàn)的結(jié)晶。全書分成初級篇和高級篇兩個部分,共18章內(nèi)容,每章都以“專題一技術(shù)一算法”的模式呈現(xiàn),闡述深入淺出,簡明易懂。本書幾乎涵蓋了組合數(shù)學(xué)中所有有趣的主題,如中國郵遞員問題、中國的九連環(huán)問題、友誼定理等,當(dāng)然也收集了若干前沿內(nèi)容。 本書適合作為高等院校高年級本科生與低年級研究生的組合數(shù)學(xué)課程教材,也適合各理工學(xué)科科研人員參考。
作者簡介
Peter J.Cameron,世界著名組合數(shù)學(xué)家,倫敦大學(xué)瑪麗皇后學(xué)院純數(shù)學(xué)中心主任,現(xiàn)任英國組合數(shù)學(xué)委員會主席,1971年牛津大學(xué)博士畢業(yè),師從Peter M.Neumann。1979年獲得倫敦?cái)?shù)學(xué)會頒發(fā)的懷德海獎(Whitehead Prize),2003年獲得歐拉獎。已發(fā)表學(xué)術(shù)論文250多篇。
書籍目錄
1. What is Combinatorics?2. On numbers and counting3. Subsets, partitions, permutations4. Recurrence relations and generating functions5. The Principle of Inclusion and Exclusion6. Latin squares and SDRs7. Extremal set theory8. Steiner triple systems9. Finite geometry10. Ramsey's Theorem11. Graphs12. Posets, lattices and matroids13. More on partitions and permutations14. Automorphism groups and permutation groups15. Enumeration under group action16. Designs17. Error-correcting codes18. Graph colourings19. The infinite20. Where to from here?Answers to selected exercisesBibliographyIndex
媒體關(guān)注與評論
“……非常適合用作高年級本科生或研究生的教材,同時也是一本很優(yōu)秀的參考書……所選內(nèi)容非常精彩?!薄 猅he UMAP Journal “本書篇幅不大,內(nèi)容卻很豐富……是其他教材重要的補(bǔ)充讀物……” ——M.Henle,Choice
編輯推薦
《組合數(shù)學(xué)專題、技術(shù)與算法(英文版)》是組臺數(shù)學(xué)領(lǐng)域的名著,既涵蓋了組合數(shù)學(xué)中所有經(jīng)典主題,也收集了若干前沿內(nèi)容。對很多內(nèi)容給出構(gòu)造證明或算法證明,比已經(jīng)存在的一些證明更有價值。書中示例豐富,每章配有習(xí)題,書后還給出部分習(xí)題的答案。 《組合數(shù)學(xué)專題、技術(shù)與算法(英文版)》是作者20多年研究和教學(xué)經(jīng)驗(yàn)的結(jié)晶,闡述深入淺出,簡明易懂,非常適合作為教材或參考書?!督M合數(shù)學(xué)專題、技術(shù)與算法(英文版)》已經(jīng)被加州大學(xué)伯克利分校、伊利諾伊大學(xué)厄巴納一尚佩恩分校等用作教材。
圖書封面
圖書標(biāo)簽Tags
無
評論、評分、閱讀與下載