出版時(shí)間:2009-2-1 出版社:人民郵電出版社 作者:James Kennedy,Russell C Eberhart,Yuhui Shi 頁(yè)數(shù):512
Tag標(biāo)簽:無(wú)
前言
At this moment a half.dozen astronauts are assembling a new space station hundreds of miles above the surface of the earth.Thousands of sailors live and work under the sea in submarines.Incas iog through theAndes.Nomads roam the Arabian sands.Homo sapiensliterally,“intelli-gent man” has adapted to nearly every environment on the face of theearth.below it,and as far above it as we can propel ourselves.W_e must bedoing something right. In this book we argue that what we do right is related to our socialit.We will investigate that elusive quality known as intelligence,which isconsidered first of all a trait of humans and second as something thatmight be created in a computer,and our conclusion will be that whatever this“intelligence”is。it arises from interactions among individuals.We humans are the most social of animals:we live together in families,tribes.cities,nations,behaving and thinking according to the rules andnorms of our communities,adopting the customs of our fellows,including the facts they believe and the explanations they use to tie those factstogether.Even when we are alone,we think about other people,andeven when we think about inanimate things,we think using language the medium of interpersonal communication.
內(nèi)容概要
群體智能是通過(guò)模擬自然界生物群體行為來(lái)實(shí)現(xiàn)人工智能的一種方法。本書(shū)綜合運(yùn)用認(rèn)知科學(xué)、社會(huì)心理學(xué)、人工智能和演化計(jì)算等學(xué)科知識(shí),提供了一些非常有價(jià)值的新見(jiàn)解,并將這些見(jiàn)解加以應(yīng)用,以解決困難的工程問(wèn)題。書(shū)中首先探討了基礎(chǔ)理論,然后詳盡展示如何將這些理論和模型應(yīng)用于新的計(jì)算智能方法(粒子群)中,以適應(yīng)智能系統(tǒng)的行為,最后描述了應(yīng)用粒子群優(yōu)化算法的好處,提供了強(qiáng)有力的優(yōu)化、學(xué)習(xí)和問(wèn)題解決的方法。 本書(shū)主要面向計(jì)算機(jī)相關(guān)學(xué)科的高年級(jí)本科生或研究生以及相關(guān)領(lǐng)域的研究與開(kāi)發(fā)技術(shù)人員。
作者簡(jiǎn)介
James Kennedy社會(huì)心理學(xué)家。自1994年起,他一直致力于粒子群算法的研究工作,并與Russell C.Eberhart共同開(kāi)發(fā)了粒子群優(yōu)化算法。目前在美國(guó)勞工部從事調(diào)查方法的研究工作。他在計(jì)算機(jī)科學(xué)和社會(huì)科學(xué)雜志和學(xué)報(bào)上發(fā)表過(guò)許多關(guān)于粒子群的論文。
RusselI C.Eberhart 普度大學(xué)電子與計(jì)算機(jī)工程系主任。IEEE會(huì)士。與JamesKennedy共同提出了粒子群優(yōu)化算法。曾任IEEE神經(jīng)網(wǎng)絡(luò)委員會(huì)的主席。除了本書(shū)之外,他還著有《計(jì)算智能:從概念到實(shí)現(xiàn)》(影印版由人民郵電出版社出版)等。
Yuhui Shi (史玉回)國(guó)際計(jì)算智能領(lǐng)域?qū)<?,現(xiàn)任Joumal ofSwarm Intellgence編委,IEEE CIS群體智能任務(wù)組主席,西交利物浦大學(xué)電子與電氣工程系教授。1992年獲東南大學(xué)博士學(xué)位,先后在美國(guó)、韓國(guó)、澳大利亞等地從事研究工作,曾任美國(guó)電子資訊系統(tǒng)公司專家長(zhǎng)達(dá)9年。他還是《計(jì)算智能:從概念到實(shí)現(xiàn)》一書(shū)的作者之一。
書(shū)籍目錄
part one Foundations chapter one Models and Concepts of Life and Intelligence The Mechanics of Life and Thought Stochastic Adaptation: Is Anything Ever Really Random? The “Two Great Stochastic Systems” The Game of Life: Emergence in Complex Systems The Game of Life Emergence Cellular Automata and the Edge of Chaos Artificial Life in Computer Programs Intelligence: Good Minds in People and Machines Intelligence in People: The Boring Criterion Intelligence in Machines: The Turing Criterion chapter two Symbols, Connections, and Optimization by Trial and Error Symbols in Trees and Networks Problem Solving and Optimization A Super-Simple Optimization Problem Three Spaces of Optimization Fitness Landscapes High-Dimensional Cognitive Space and Word Meanings Two Factors of Complexity: NK Landscapes Combinatorial Optimization Binary Optimization Random and Greedy Searches Hill Climbing Simulated Annealing Binary and Gray Coding Step Sizes and Granularity Optimizing with Real Numbers Summary chapter three On Our Nonexistence as Entities: The Social Organism Views of Evolution Gaia: The Living Earth Differential Selection Our Microscopic Masters? Looking for the Right Zoom Angle Flocks, Herds, Schools, and Swarms: Social Behavior as Optimization Accomplishments of the Social Insects Optimizing with Simulated Ants: Computational Swarm Intelligence Staying Together but Not Colliding: Flocks, Herds, and Schools Robot Societies Shallow Understanding Agency Summary chapter four Evolutionary Computation Theory and Paradigms Introduction Evolutionary Computation History The Four Areas of Evolutionary Computation Genetic Algorithms Evolutionary Programming Evolution Strategies Genetic Programming Toward Unification Evolutionary Computation Overview EC Paradigm Attributes Implementation Genetic Algorithms An Overview A Simple GA Example Problem A Review of GA Operations Schemata and the Schema Theorem Final Comments on Genetic Algorithms Evolutionary Programming The Evolutionary Programming Procedure Finite State Machine Evolution Function Optimization Final Comments Evolution Strategies Mutation Recombination Selection Genetic Programming Summary chapter five Humans—Actual, Imagined, and Implied chapter six Thinking Is Socialpart two The Particle Swarm and Collective Intelligence chapter seven The Particle Swarm chapter eight Variations and Comparisons chapter nine Applications chapter ten Implications and Speculationschapter eleven And in Conclusion Appendix A Statistics for Swarmers Appendix B Genetic Algorithm Implementation Glossary References Index
章節(jié)摘錄
插圖:
媒體關(guān)注與評(píng)論
“本書(shū)內(nèi)容豐富,富于啟發(fā)性和思想性,強(qiáng)烈推薦給所有的演進(jìn)計(jì)算研究人員?!薄 狦enetic Programming and Evolvable'Machines “這本書(shū)極為出色,不愧為PSO和群體智能的最佳參考書(shū):” ——Konstantions E.Parsopoulos 希臘Palras大學(xué)
編輯推薦
《群體智能》由粒子群優(yōu)化算法之父撰寫(xiě),是該領(lǐng)域毋庸置疑的經(jīng)典著作。作者提出,人類智能來(lái)源于社會(huì)環(huán)境中個(gè)體之間的交互,這種智能模型可以有效地應(yīng)用到人工智能系統(tǒng)中去。書(shū)中首先從社會(huì)心理學(xué)、認(rèn)知科學(xué)和演化計(jì)算等多個(gè)角度闡述了這種新方法的基礎(chǔ),然后詳細(xì)說(shuō)明了應(yīng)用這些理論和模型所得出的新的計(jì)算智能方法——粒子群優(yōu)化,進(jìn)而深入地探討了如何將粒子群優(yōu)化應(yīng)用于廣泛的工程問(wèn)題。群體智能是近年來(lái)發(fā)展迅速的人工智能學(xué)科領(lǐng)域。通過(guò)研究分散、自組織的動(dòng)物群體和人類社會(huì)的智能行為,學(xué)者們提出了許多迥異于傳統(tǒng)思路的智能算法,很好地解決了不少原來(lái)非常棘手的復(fù)雜工程問(wèn)題。與蟻群算法齊名的粒子群優(yōu)化(particle swarm optimizatiotl,簡(jiǎn)稱PSO)算法就是其中最受矚目、應(yīng)用最為廣泛的成果之一?!度后w智能》的C及ViSLlaI Basic源代碼可以在圖靈網(wǎng)站《群體智能》網(wǎng)頁(yè)免費(fèi)注冊(cè)下載。
圖書(shū)封面
圖書(shū)標(biāo)簽Tags
無(wú)
評(píng)論、評(píng)分、閱讀與下載
250萬(wàn)本中文圖書(shū)簡(jiǎn)介、評(píng)論、評(píng)分,PDF格式免費(fèi)下載。 第一圖書(shū)網(wǎng) 手機(jī)版