出版時間:2008-9 出版社:人民郵電出版社 作者:克萊巴納 頁數(shù):416
Tag標(biāo)簽:無
內(nèi)容概要
本書介紹了隨機(jī)分析的理論和應(yīng)用兩方面的知識。內(nèi)容涉及積分和概率論的基礎(chǔ)知識、基本的隨機(jī)過程,布朗運(yùn)動和伊藤過程的積分、隨機(jī)微分方程、半鞅積分、純離散過程,以及隨機(jī)分析在金融、生物、工程和物理等方面的應(yīng)用。書中有大量的例題和習(xí)題,并附有答案,便于讀者進(jìn)行深層次的學(xué)習(xí)。 本書非常適合初學(xué)者閱讀,可作為高等院校經(jīng)管、理工和社科類各專業(yè)高年級本科生和研究生隨機(jī)分析和金融數(shù)學(xué)的教材,也可供相關(guān)領(lǐng)域的科研人員參考。
作者簡介
Fima C Klebaner,澳夫利亞Monash(莫納什)大學(xué)教授,IMS(國際數(shù)理統(tǒng)計學(xué)會)會士,著名數(shù)理統(tǒng)計和金融數(shù)學(xué)家。主要研究領(lǐng)域有:隨饑過程、概率應(yīng)用、隨機(jī)分析、金融數(shù)學(xué)、動態(tài)系統(tǒng)的隨機(jī)擾動等。
書籍目錄
1 Preliminaries From Calculus 1.1 Functions in Calculus 1.2 Variation of a Function 1.3 Riemann Integral and Stieltjes Integral 1.4 Lebesgue’s Method of Integration 1.5 Differentials and Integrals 1.6 Taylor’s Formula and Other Results2 Concepts of Probability Theory 2.1 Discrete Probability Model 2.2 Continuous Probability Model 2.3 Expectation and Lebesgue Integral 2.4 Transforms and Convergence 2.5 Independence and Covariance 2.6 Normal (Gaussian) Distributions 2.7 Conditional Expectation 2.8 Stochastic Processes in Continuous Time3 Basic Stochastic Processes 3.1 Brownian Motion 3.2 Properties of Brownian Motion Paths 3.3 Three Martingales of Brownian Motion 3.4 Markov Property of Brownian Motion 3.5 Hitting Times and Exit Times 3.6 Maximum and Minimum of Brownian Motion 3.7 Distribution of Hitting Times 3.8 Reflection Principle and Joint Distributions 3.9 Zeros of Brownian Motion. Arcsine Law 3.10 Size of Increments of Brownian Motion 3.11 Brownian Motion in Higher Dimensions 3.12 Random Walk 3.13 Stochastic Integral in Discrete Time 3.14 Poisson Process 3.15 Exercises4 Brownian Motion Calculus 4.1 Definition of It6 Integral 4.2 Ito Integral Process 4.3 Ito Integral and Gaussian Processes 4.4 Ito’s Formula for Brownian Motion 4.5 Ito Processes and Stochastic Differentials 4.6 Ito’s Formula for It6 Processes 4.7 Ito Processes in Higher Dimensions 4.8 Exercises5 Stochastic Differential Equations 5.1 Definition of Stochastic Differential Equations 5.2 Stochastic Exponential and Logarithm 5.3 Solutions to Linear SDEs 5.4 Existence and Uniqueness of Strong Solutions 5.5 Markov Property of Solutions 5.6 Weak Solutions to SDEs 5.7 Construction of Weak Solutions 5.8 Backward and Forward Equations 5.9 Stratanovich Stochastic Calculus 5.10 Exercises6 Diffusion Processes 6.1 Martingales and Dynkin’s Formula 6.2 Calculation of Expectations and PDEs 6.3 Time Homogeneous Diffusions 6.4 Exit Times from an Interval 6.5 Representation of Solutions of ODEs 6.6 Explosion 6.7 Recurrence and Transience 6.8 Diffusion on an Interval 6.9 Stationary Distributions 6.10 Multi-Dimensional SDEs 6.11 Exercises7 Martingales 7.1 Definitions 7.2 Uniform Integrability 7.3 Martingale Convergence 7.4 Optional Stopping 7.5 Localization and Local Martingales 7.6 Quadratic Variation of Martingales 7.7 Martingale Inequalities 7.8 Continuous Martingales. Change of Time 7.9 Exercises8 Calculus For Semimartingales 8.1 Semimartingales 8.2 Predictable Processes 8.3 Doob-Meyer Decomposition 8.4 Integrals with respect to Semimartingales 8.5 Quadratic Variation and Covariation 8.6 ItS’s Formula for Continuous Semimartingales 8.7 Local Times 8.8 Stochastic Exponential 8.9 Compensators and Sharp Bracket Process 8.10 ItS’s Formula for Semimartingales 8.11 Stochastic Exponential and Logarithm 8.12 Martingale (Predictable) Representations 8.13 Elements of the General Theory 8.14 Random Measures and Canonical Decomposition 8.15 Exercises9 Pure Jump Processes 9.1 Definitions 9.2 Pure Jump Process Filtration 9.3 ItS’s Formula for Processes of Finite Variation 9.4 Counting Processes 9.5 Markov Jump Processes 9.6 Stochastic Equation for Jump Processes 9.7 Explosions in Markov Jump Processes 9.8 Exercises10 Change of Probability Measure 10.1 Change of Measure for Random Variables 10.2 Change of Measure on a General Space 10.3 Change of Measure for Processes 10.4 Change of Wiener Measure 10.5 Change of Measure for Point Processes 10.6 Likelihood Functions 10.7 Exercises11 Applications in Finance: Stock and FX Options 11.1 Financial Deriwtives and Arbitrage 11.2 A Finite Market Model 11.3 Semimartingale Market Model 11.4 Diffusion and the Black-Scholes Model 11.5 Change of Numeraire 11.6 Currency (FX) Options 11.7 Asian, Lookback and Barrier Options 11.8 Exercises12 Applications in Finance: Bonds, Rates and Option 12.1 Bonds and the Yield Curve 12.2 Models Adapted to Brownian Motion 12.3 Models Based on the Spot Rate 12.4 Merton’s Model and Vasicek’s Model 12.5 Heath-Jarrow-Morton (HJM) Model 12.6 Forward Measures. Bond as a Numeraire 12.7 Options, Caps and Floors 12.8 Brace-Gatarek-Musiela (BGM) Model 12.9 Swaps and Swaptions 12.10 Exercises13 Applications in Biology 13.1 Feller’s Branching Diffusion 13.2 Wright-Fisher Diffusion 13.3 Birth-Death Processes 13.4 Branching Processes 13.5 Stochastic Lotka-Volterra Model 13.6 Exercises14 Applications in Engineering and Physics 14.1 Filtering 14.2 Random Oscillators 14.3 ExercisesSolutions to Selected ExercisesReferencesIndex
編輯推薦
《隨機(jī)分析及應(yīng)用(英文版)(第2版)》是隨機(jī)分析方面的名著之一。以主題廣泛豐富,論述簡潔易懂而又不失嚴(yán)密著稱。書中闡述了各領(lǐng)域的典型應(yīng)用,包括數(shù)理金融、生物學(xué)、工程學(xué)中的模型。還提供了很多示例和習(xí)題,并附有解答。第2版增加了講述證券,利率及其期權(quán)的一章,并在全書增加了許多新內(nèi)容,以反映隨機(jī)分析研究和應(yīng)用的最新成果?!峨S機(jī)分析及應(yīng)用(英文版)(第2版)》可作為高年級本科生和研究生的隨機(jī)分析和金融數(shù)學(xué)的教材,也非常適合各領(lǐng)域?qū)I(yè)人士自學(xué)?!峨S機(jī)分析及應(yīng)用(英文版)(第2版)》內(nèi)容簡潔,闡述透徹,包含豐富的例子,并有精彩解答?!猂obert Liptser教授,以色列特拉維夫大學(xué)在講述隨機(jī)分析的著作中,像《隨機(jī)分析及應(yīng)用(英文版)(第2版)》這樣涵蓋廣泛而又具有很強(qiáng)可讀性的實(shí)屬罕見。——Mathematical Reviews
圖書封面
圖書標(biāo)簽Tags
無
評論、評分、閱讀與下載