概率論基礎(chǔ)教程

出版時(shí)間:2007-9  出版社:人民郵電  作者:羅斯  頁(yè)數(shù):565  字?jǐn)?shù):692000  
Tag標(biāo)簽:無(wú)  

內(nèi)容概要

本書是全球高校廣泛采用的概率論教材,通過(guò)大量的例子講述了概率論的基礎(chǔ)知識(shí),主要內(nèi)容有組合分析、概率論公理化、條件概率和獨(dú)立性、離散和連續(xù)型隨機(jī)變量、隨機(jī)變量的聯(lián)合分布、期望的性質(zhì)、極限定理等。本書附有大量的練習(xí),分為習(xí)題、理論習(xí)題和自檢習(xí)題三大類,其中自檢習(xí)題部分還給出全部解答?! ”緯鳛楦怕收摰娜腴T書,適用于大專院校數(shù)學(xué)、統(tǒng)計(jì)、工程和相關(guān)專業(yè)(包括計(jì)算科學(xué)、生物、社會(huì)科學(xué)和管理科學(xué))的學(xué)生閱讀,也可供概率應(yīng)用工作者參考。

作者簡(jiǎn)介

Sheldon M.Ross,國(guó)際知名概率與統(tǒng)計(jì)學(xué)家,南加州大學(xué)工業(yè)工程與運(yùn)籌系系主任。畢業(yè)于斯坦福大學(xué)統(tǒng)計(jì)系,曾在加州大學(xué)伯克利分校任教多年。研究領(lǐng)域包括:隨機(jī)模型、仿真模擬、統(tǒng)計(jì)分析、金融數(shù)學(xué)等。Ross教授著述頗豐,他的多種暢銷數(shù)學(xué)和統(tǒng)計(jì)教材均產(chǎn)生了世界性的影響,如S

書籍目錄

1 Combinatorial Analysis  1.1 Introduction  1.2 The Basic Principle of Counting  1.3 Permutations  1.4 Combinations  1.5 Multinomial Coefficients  1.6 The Number of Integer Solutions of Equations*   Summary   Problems   Theoretical Exercises   Self-Test Problems and Exercises 2 Axioms of Probability  2.1 Introduction  2.2 Sample Space and Events  2.3 Axioms of Probability  2.4 Some Simple Propositions  2.5 Sample Spaces Having Equally Likely Outcomes  2.6 Probability as a Continuous Set Function*  2.7 Probability as a Measure of Belief   Summary   Problems   Theoretical Exercises   Self-Test Problems and Exercises 3 Conditional Probability and Independence  3.1 Introduction  3.2 Conditional Probabilities  3.3 Bayes' Formula  3.4 Independent Events  3.5 P(.|F) Is a Probability   Summary   Problems   Theoretical Exercises   Self-Test Problems and Exercises 4 Random Variables  4.1 Random Variables  4.2 Discrete Random Variables  4.3 Expected Value  4.4 Expectation of a Function of a Random Variable  4.5 Variance  4.6 The Bernoulli and Binomial Random Variables   4.6.1 Properties of Binomial Random Variables   4.6.2 Computing the Binomial Distribution Function  4.7 The Poisson Random Variable   4.7.1 Computing the Poisson Distribution Function  4.8 Other Discrete Probability Distributions   4.8.1 The Geometric Random Variable   4.8.2 The Negative Binomial Random Variable   4.8.3 The Hypergeometric Random Variable   4.8.4 The Zeta (or Zipf) Distribution  4.9 Properties of the Cumulative Distribution Function   Summary   Problems   Theoretical Exercises   Self-Test Problems and Exercises 5 Continuous Random Variables  5.1 Introduction  5.2 Expectation and Variance of Continuous Random Variables  5.3 The Uniform Random Variable  5.4 Normal Random Variables   5.4.1 The Normal Approximation to the Binomial Distribution  5.5 Exponential Random Variables   5.5.1 Hazard Rate Functions  5.6 Other Continuous Distributions   5.6.1 The Gamma Distribution   5.6.2 The Weibull Distribution   5.6.3 The Cauchy Distribution   5.6.4 The Beta Distribution  5.7 The Distribution of a Function of a Random Variable   Summary   Problems   Theoretical Exercises   Self-Test Problems and Exercises 6 Jointly Distributed Random Variables  6.1 Joint Distribution Functions  6.2 Independent Random Variables  6.3 Sums of Independent Random Variables  6.4 Conditional Distributions: Discrete Case  6.5 Conditional Distributions: Continuous Case  6.6 Order Statistics*  6.7 Joint Probability Distribution of Functions of Random Variables  6.8 Exchangeable Random Variables*   Summary   Problems   Theoretical Exercises   Self-Test Problems and Exercises 7 Properties of Expectation  7.1 Introduction  7.2 Expectation of Sums of Random Variables   7.2.1 Obtaining Bounds from Expectations via the Probabilistic Method*   7.2.2 The Maximum-Minimums Identity*  7.3 Moments of the Number of Events that Occur  7.4 Covariance, Variance of Sums, and Correlations  7.5 Conditional Expectation   7.5.1 Definitions   7.5.2 Computing Expectations by Conditioning   7.5.3 Computing Probabilities by Conditioning   7.5.4 Conditional Variance  7.6 Conditional Expectation and Prediction  7.7 Moment Generating Functions   7.7.1 Joint Moment Generating Functions  7.8 Additional Properties of Normal Random Variables   7.8.1 The Multivariate Normal Distribution   7.8.2 The Joint Distribution of the Sample Mean and Sample Variance  7.9 General Definition of Expectation   Summary   Problems   Theoretical Exercises   Self-Test Problems and Exercises 8 Limit Theorems  8.1 Introduction  8.2 Chebyshev's Inequality and the Weak Law of Large Numbers  8.3 The Central Limit Theorem  8.4 The Strong Law of Large Numbers  8.5 Other Inequalities  8.6 Bounding The Error Probability   Summary   Problems   Theoretical Exercises   Self-Test Problems and Exercises 9 Additional Topics in Probability  9.1 The Poisson Process  9.2 Markov Chains  9.3 Surprise, Uncertainty, and Entropy  9.4 Coding Theory and Entropy   Summary   Theoretical Exercises   Self-Test Problems and Exercises 10 Simulation  10.1 Introduction  10.2 General Techniques for Simulating Continuous Random Variables   10.2.1 The Inverse Transformation Method   10.2.2 The Rejection Method  10.3 Simulating from Discrete Distributions  10.4 Variance Reduction Techniques   10.4.1 Use of Antithetic Variables   10.4.2 Variance Reduction by Conditioning   10.4.3 Control Variates   Summary   Problems   Self-Test Problems and Exercises APPENDICESA Answers to Selected Problems B Solutions to Self-Test Problems and Exercises Index 

圖書封面

圖書標(biāo)簽Tags

無(wú)

評(píng)論、評(píng)分、閱讀與下載


    概率論基礎(chǔ)教程 PDF格式下載


用戶評(píng)論 (總計(jì)5條)

 
 

  •   作者是美國(guó)隨機(jī)方面的大家,許多美國(guó)大學(xué)均選擇其書籍作為教材。如:ColumbiaUniversity,等等。所以,對(duì)于初級(jí)學(xué)生而言,還是對(duì)于專業(yè)人事而言,均是非常好的。
  •   說(shuō)著書淺的大哥是個(gè)研究生吧...對(duì)本科生我覺(jué)得是夠了想想國(guó)內(nèi)的書,概率論+數(shù)理統(tǒng)計(jì)+隨即過(guò)程,最多有這本書一半那么厚。書中的例題包羅萬(wàn)象,有些還挺難的。習(xí)題也是大把大把的缺點(diǎn)是組織得有點(diǎn)亂,每次想在書里找點(diǎn)什么東西東很費(fèi)勁總之強(qiáng)烈推薦作為本科概率論教材,你想學(xué)的幾乎都在里面
  •   此書風(fēng)格很Ross,不過(guò)內(nèi)容還是淺些,初學(xué)的話相當(dāng)推薦,否則就算了吧
  •   goodtextbook
  •   我上學(xué)期教本科生這門課,作為參考,用的還是挺少的。
 

250萬(wàn)本中文圖書簡(jiǎn)介、評(píng)論、評(píng)分,PDF格式免費(fèi)下載。 第一圖書網(wǎng) 手機(jī)版

京ICP備13047387號(hào)-7