人工智能原理與應(yīng)用

出版時間:2004-3-1  出版社:人民郵電出版社  作者:王文杰,葉世偉  頁數(shù):478  字?jǐn)?shù):748000  

內(nèi)容概要

本書系統(tǒng)地闡述了人工智能的基本原理、基本技術(shù)、研究方法和應(yīng)用領(lǐng)域等內(nèi)容,比較全面地反映了國內(nèi)外人工智能研究領(lǐng)域的最新進展和發(fā)展方向。全書共分為16章,內(nèi)容涉及到人工智能基本概念、結(jié)構(gòu)化和非結(jié)構(gòu)化知識表示技術(shù)、搜索技術(shù)和問題求解、確定性推理和不確定性推理、非標(biāo)準(zhǔn)邏輯、專家系統(tǒng)、機器學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)、統(tǒng)計學(xué)習(xí)、遺傳算法和智能Agent、自然語言處理等幾個方面。每章后面均附有習(xí)題,以供讀者練習(xí)。本書充分考慮到人工智能學(xué)科的整體結(jié)構(gòu),注重系統(tǒng)性、先進性、新穎性、實用性。內(nèi)容由淺入深、循序漸進,條理清晰。?    本書是為人工智能原理課程而編寫的,同時也涵蓋了國家學(xué)位委員會對同等學(xué)歷人員申請計算機科學(xué)技術(shù)專業(yè)碩士學(xué)位"人工智能考試大綱"的內(nèi)容,可作為相關(guān)學(xué)科的本科生、研究生以及在職研究生的教材,也可以供從事相關(guān)專業(yè)的教師和廣大科技人員作為參考書。

書籍目錄

第1章 緒論?1.1 人工智能的界定?1.1.1 什么是人工智能2?1.1.2 人工智能的研究目標(biāo)4?1.1.3 人工智能中的通用問題求解方法5?1.2 人工智能的學(xué)科范疇8?1.2.1 人工智能的研究范疇8?1.2.2 人工智能技術(shù)的應(yīng)用2?1.3 人工智能的研究方法5?1.3.1 人工智能研究的特點5?1.3.2 人工智能的研究途徑5?1.4 人工智能的發(fā)展簡史和趨勢8?1.4.1 人工智能的發(fā)展簡史8?1.4.2 人工智能發(fā)展趨勢22?1.5 本書的目標(biāo)和范圍23?1.6 小結(jié)24?習(xí)題24?第2章 搜索技術(shù)25?2.1 引言25?2.2 通用問題求解方法26?2.2.1 寬度優(yōu)先搜索27?2.2.2 深度優(yōu)先搜索29?2.2.3 迭代加深搜索30?2.3 啟發(fā)式搜索32?2.3.1 啟發(fā)性信息和評估函數(shù)33?2.3.2 啟發(fā)式OR圖搜索算法33?2.4 問題歸約和AND?OR圖啟發(fā)式搜索45?2.4.1 問題歸約的描述45?2.4.2 AND?OR圖表示45?2.4.3 AO??算法47?人工智能原理與應(yīng)用2.5 博弈52?2.5.1 極大極小過程53?2.5.2 α?β過程55?2.6 約束滿足搜索57?2.7 小結(jié)60?習(xí)題61?第3章 知識表示及邏輯推理63?3.1 概述63?3.1.1 知識和知識表示63?3.1.2 人工智能對知識表示方法的要求65?3.2 知識表示語言問題65?3.3 命題邏輯67?3.3.1 語法67?3.3.2 語義68?3.4 謂詞邏輯70?3.4.1 語法70?3.4.2 語義76?3.5 邏輯推理78?3.5.1 謂詞公式的等價性和永真蘊涵78?3.5.2 謂詞公式的有效性和可滿足性80?3.6 符號邏輯中的范式83?3.7 一階謂詞邏輯的應(yīng)用84?3.8 小結(jié)86?習(xí)題87?第4章 歸結(jié)原理及其應(yīng)用89?4.1 引言89?4.2 命題演算中的歸結(jié)〖WT〗〖ST〗90?4.2.1 歸結(jié)推理規(guī)則90?4.2.2 歸結(jié)反演91?4.2.3 命題邏輯歸結(jié)反演的合理性和完備性93?4.2.4 歸結(jié)反演的搜索策略93?4.3 謂詞演算中的歸結(jié)95?4.3.1 子句型95?4.3.2 置換和合一98?4.3.3 合一算法00?4.3.4 歸結(jié)式02?4.3.5 歸結(jié)反演03?4.3.6 答案的提取05?4.4 謂詞演算歸結(jié)反演的完備性和合理性08?4.4.1 Herbrand域08?4.4.2 Herbrand解釋09?4.4.3 語義樹10?4.4.4 Herbrand定理12?4.4.5 完備性和合理性14?目錄4.5 邏輯程序設(shè)計原理17?4.5.1 邏輯程序定義17?4.5.2 Prolog數(shù)據(jù)結(jié)構(gòu)和遞歸18?4.5.3 SLD歸結(jié)19?4.5.4 非邏輯成分:CUT21?4.5.5 其他邏輯程序設(shè)計語言23?4.6 小結(jié)24?習(xí)題24?第5章 缺省和非單調(diào)推理28?5.1 引言28?5.2 非單調(diào)推理29?5.3 封閉世界假設(shè)31?5.4 缺省推理33?5.5 限制理論37?5.6 非單調(diào)邏輯39?5.7 真值維護系統(tǒng)41?5.8 框架問題44?5.8.1 什么是框架問題45?5.8.2 框架問題的非單調(diào)解決方案49?5.9 小結(jié)54?習(xí)題55?第6章 不確定性推理57?6.1 概述57?6.1.1 什么是不確定推理57?6.1.2 不確定推理要解決的基本問題58?6.1.3 不確定性推理方法分類60?6.2 主觀Bayes方法61?6.2.1 全概率公式和Bayes公式61?6.2.2 主觀Bayes方法63?6.3 確定性理論71?6.3.1 建造醫(yī)學(xué)專家系統(tǒng)時的問題71?6.3.2 C?F模型72?6.3.3 確定性方法的說明77?6.4 證據(jù)理論78?6.4.1 假設(shè)的不確定性78?6.4.2 證據(jù)的不確定性82?6.4.3 證據(jù)的組合函數(shù)82?6.4.4 規(guī)則的不確定性83?6.4.5 不確定性的傳遞83?6.4.6 不確定性的組合84?6.4.7 證據(jù)理論的特點86?6.5 模糊邏輯和模糊推理86?6.5.1 模糊集合及其運算86?6.5.2 模糊關(guān)系88?6.5.3 語言變量89?6.5.4 模糊邏輯89?6.5.5 模糊推理90?6.6 小結(jié)98?習(xí)題99?第7章 產(chǎn)生式系統(tǒng)201?7.1 概述201?7.2 產(chǎn)生式專家系統(tǒng)CLIPS203?7.2.1 產(chǎn)生式系統(tǒng)語言CLIPS203?7.2.2 CLIPS中知識的表示模式203?7.2.3 CLIPS運行207?7.3 產(chǎn)生式系統(tǒng)的匹配算法209?7.3.1 索引記數(shù)法210?7.3.2 Rete算法210?7.3.3 書寫規(guī)則時效率的考慮214?7.4 產(chǎn)生式系統(tǒng)的沖突消解策略216?7.5 元知識217?7.5.1 什么是元知識217?7.5.2 元知識的作用218?7.5.3 元知識的使用模式219?7.6 產(chǎn)生式系統(tǒng)的推理方向220?7.7 產(chǎn)生式系統(tǒng)的類型222?7.8 產(chǎn)生式系統(tǒng)的特點223?7.9 小結(jié)224?習(xí)題224?第8章 知識的結(jié)構(gòu)化表示226?8.1 引言226?8.2 語義網(wǎng)絡(luò)227?8.2.1 語義網(wǎng)絡(luò)的基本概念227?8.2.2 基本事實的表示228?8.2.3 表示情況和動作230?8.2.4 多元語義網(wǎng)絡(luò)的表示231?8.2.5 連接詞與量詞的表示231?8.2.6 語義網(wǎng)絡(luò)的推理過程234?8.2.7 語義網(wǎng)絡(luò)表示方法的特點238?8.3 框架239?8.3.1 框架理論239?8.3.2 框架240?8.3.3 框架系統(tǒng)243?8.3.4 框架中預(yù)先定義的槽245?8.3.5 框架中的推理247?8.3.6 框架表示方法的特點249?8.3.7 框架系統(tǒng)、語義網(wǎng)絡(luò)、面向?qū)ο笾R表示的比較250?8.4 Petri網(wǎng)251?8.5 概念依賴253?8.6 腳本255?8.7 小結(jié)256?習(xí)題257?第9章 專家系統(tǒng)259?9.1 專家系統(tǒng)概述〖ST〗〖WT〗259?9.1.1 什么是專家系統(tǒng)259?9.1.2 專家系統(tǒng)的結(jié)構(gòu)260?9.2 問題求解組織結(jié)構(gòu)263?9.2.1 議程表263?9.2.2 問題求解的黑板模型264?9.2.3 面向?qū)ο蟮膯栴}組織結(jié)構(gòu)266?9.3 知識獲取266?9.3.1 知識獲取的手工方法266?9.3.2 知識獲取的機器學(xué)習(xí)方法269?9.4 有效性、驗證和維護問題269?9.4.1 專家系統(tǒng)的有效性270?9.4.2 知識庫的驗證272?9.4.3 知識庫的維護275?9.5 專家系統(tǒng)開發(fā)工具276?9.6 小結(jié)278?習(xí)題279??第10章 機器學(xué)習(xí)280?10.1 機器學(xué)習(xí)的概念和方法280?10.1.1 什么是機器學(xué)習(xí)280?10.1.2 機器學(xué)習(xí)研究概況281?10.1.3 機器學(xué)習(xí)研究方法282?10.2 歸納學(xué)習(xí)〖WT〗〖ST〗285?10.2.1 歸納學(xué)習(xí)的基本概念285?10.2.2 版本空間學(xué)習(xí)287?10.2.3 基于決策樹的歸納學(xué)習(xí)方法289?10.2.4 Induce算法292?10.3 其他學(xué)習(xí)方法〖WT〗〖ST〗294?10.3.1 類比學(xué)習(xí)294?10.3.2 解釋學(xué)習(xí)295?10.4 加強學(xué)習(xí)297?10.5 歸納邏輯程序設(shè)計學(xué)習(xí)300?10.6 基于范例的學(xué)習(xí)301?10.6.1 CBR的過程模型302?10.6.2 范例的表示和索引303?10.6.3 范例的推理304?10.6.4 范例的學(xué)習(xí)306?10.7 小結(jié)306?習(xí)題307?第11章 人工神經(jīng)網(wǎng)絡(luò)理論309?11.1 概述309?11.1.1 基本的神經(jīng)網(wǎng)絡(luò)模型309?11.1.2 神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)方法310?11.2 人工神經(jīng)元及感知機模型〖WT〗〖ST〗311?11.2.1 基本神經(jīng)元311?11.2.2 感知機模型312?11.3 前饋神經(jīng)網(wǎng)絡(luò)〖WT〗〖ST〗313?11.3.1 前饋神經(jīng)網(wǎng)絡(luò)模型313?11.3.2 多層前饋神經(jīng)網(wǎng)絡(luò)的誤差反向傳播(BP)算法314?11.3.3 BP算法的若干改進316?11.4 反饋神經(jīng)網(wǎng)絡(luò)317?11.4.1 離散Hopfield網(wǎng)絡(luò)317?11.4.2 連續(xù)Hopfield網(wǎng)絡(luò)322?11.4.3 Hopfield網(wǎng)絡(luò)應(yīng)用323?11.4.4 雙向聯(lián)想記憶(BAM)模型324?11.5 隨機神經(jīng)網(wǎng)絡(luò)325?11.5.1 模擬退火算法325?11.5.2 玻爾茲曼機327?11.6 自組織特征映射神經(jīng)網(wǎng)絡(luò)330?11.6.1 網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)330?11.6.2 網(wǎng)絡(luò)自組織算法331?11.6.3 有教師學(xué)習(xí)332?11.7 小結(jié)332?習(xí)題332?第12章 統(tǒng)計學(xué)習(xí)理論與支持向量機334?12.1 統(tǒng)計學(xué)習(xí)理論334?12.1.1 機器學(xué)習(xí)的表示334?12.1.2 學(xué)習(xí)過程一致性的條件335?12.1.3 VC維理論337?12.1.4 推廣性的界337?12.1.5 結(jié)構(gòu)風(fēng)險最小化338?12.2 支持向量機339?12.2.1 最優(yōu)分類超平面340?12.2.2 廣義最優(yōu)分類超平面341?12.2.3 支持向量機342?12.2.4 核函數(shù)343?12.2.5 SVM的算法及多類SVM344?12.2.6 〖WTBX〗ε〖WTBZ〗?不敏感損失函數(shù)345?12.2.7 用于非線性回歸的支持向量機346?12.2.8 SVM的應(yīng)用研究348?12.3 小結(jié)348?習(xí)題349?第13章 遺傳算法350?13.1 簡介350?13.2 遺傳算法的歷史351?13.3 遺傳算法的研究內(nèi)容和取得的進展353?13.4 遺傳算法的描述353?13.5 遺傳算法的特點357?13.6 遺傳算法的馬爾柯夫鏈分析359?13.6.1 概率意義下的收斂359?13.6.2 有限Markov鏈的預(yù)備知識359?13.6.3 Markov鏈的分析方法回顧360?13.6.4 GA的收斂性分析361?13.7 遺傳算法的研究展望362?13.8 小結(jié)364?習(xí)題364?第14章 智能Agent365?14.1 引言365?14.2 分布式人工智能366?14.2.1 分布式問題求解367?14.2.2 多Agent系統(tǒng)369?14.3 Agent與智能Agent369?14.3.1 什么是Agent370?14.3.2 什么是智能Agent371?14.3.3 Agent、專家系統(tǒng)與對象373?14.3.4 智能〖WTBZ〗Agent的抽象結(jié)構(gòu)374?14.4 模態(tài)邏輯375?14.4.1 可能世界模型376?14.4.2 模態(tài)邏輯377?14.5 知道和信念邏輯381?14.5.1 知道和信念邏輯381?14.5.2 公共和分布式知識383?14.5.3 自認(rèn)知邏輯384?14.6 邏輯萬能問題388?14.6.1 演繹規(guī)則的不完全性方法389?14.6.2 隱式和顯式信念391?14.7 理性Agent模型393?14.7.1 Cohen和Levesque的理性邏輯396?14.7.2 Rao和Georgeff的BDI邏輯399?14.7.3 KARO框架402?14.8 Agent結(jié)構(gòu)403?14.8.1 基于邏輯的Agent404?14.8.2 反應(yīng)Agent406?14.8.3 BDI Agent408?14.8.4 層次Agent410?14.9 小結(jié)412?習(xí)題412?第15章 多Agent系統(tǒng)414?15.1 引言414?15.2 Agent通信415?15.2.1 通信與DAI415?15.2.2 通信的層次417?15.2.3 言語動作417?15.2.4 知識查詢處理語言KQML421?15.2.5 Agent通信語言ACL425?15.2.6 Agent通信與對話427?15.2.7 Agent通信與WWW429?15.3 協(xié)調(diào)與合作429?15.3.1 協(xié)調(diào)430?15.3.2 合作434?15.3.3 協(xié)商435?15.3.4 市場機制438?15.4 Agent的社會性439?15.4.1 識別(Recognition)439?15.4.2 團隊形成441?15.4.3 規(guī)劃形成442?15.4.4 團隊行動443?15.5 小結(jié)443?習(xí)題444?第16章 自然語言理解445?16.1 自然語言理解的一般問題445?16.1.1 自然語言理解的概念及意義445?16.1.2 自然語言理解研究的發(fā)展446?16.1.3 自然語言理解的層次448?16.2 詞法分析449?16.3 句法分析450?16.3.1 短語結(jié)構(gòu)語法和Chomsky語法體系450?16.3.2 句法分析樹452?16.3.3 轉(zhuǎn)移網(wǎng)絡(luò)453?16.3.4 轉(zhuǎn)移網(wǎng)絡(luò)的神經(jīng)網(wǎng)絡(luò)實現(xiàn)455?16.3.5 擴充轉(zhuǎn)移網(wǎng)絡(luò)456?16.4 語義分析459?16.4.1 語義文法459?16.4.2 格文法460?16.5 大規(guī)模真實文本的處理〖WT〗〖ST〗461?16.5.1 語料庫語言學(xué)及其特點461?16.5.2 統(tǒng)計學(xué)方法的應(yīng)用及所面臨的問題464?16.5.3 漢語語料庫加工的基本方法465?16.6 對話和語用分析468?16.7 小結(jié)469?習(xí)題469?參考文獻470?

圖書封面

評論、評分、閱讀與下載


    人工智能原理與應(yīng)用 PDF格式下載


用戶評論 (總計0條)

 
 

 

250萬本中文圖書簡介、評論、評分,PDF格式免費下載。 第一圖書網(wǎng) 手機版

京ICP備13047387號-7