出版時間:2007-8 出版社:中國鐵道出版社 作者:蘇岐芳 主編 頁數(shù):309 字?jǐn)?shù):401000
內(nèi)容概要
本書介紹了科學(xué)計算中常用數(shù)值分析的基礎(chǔ)理論及計算機(jī)實現(xiàn)方法。主要內(nèi)容包括:誤差分析、插值、函數(shù)逼近、數(shù)值積分和數(shù)值微分、非線性方程的數(shù)值解法、線性方程組的直接解法、線性方程組的迭代解法、常微分方程的數(shù)值解法及相應(yīng)的上機(jī)實驗內(nèi)容等。
各章都配有大量的習(xí)題及上機(jī)實驗題目,并附有部分習(xí)題的參考答案及數(shù)學(xué)專業(yè)軟件 Mathematica和Matlab的簡介。
本書采用中、英兩種語言編寫,適合作為數(shù)學(xué)、計算機(jī)和其他理工類各專業(yè)本科“數(shù)值分析(計算方法)”雙語課程的教材或參考用書,也可供從事科學(xué)計算的相關(guān)技術(shù)人員參考。
書籍目錄
1 Error Analysis
1.1 Introduction
1.2 Sources of Erro
1.3 Erro and Significant Digits
1.4 Error Propagation
1.5 Qualitative Analysis and Control of Erro
1.5.1 Ill-condition Problem and Condition Number
1.5.2 The Stability of Algorithm
1.5.3 The Control of Erro
1.6 Computer Experiments
1.6.1 Functio Needed in The Experiments by Mathematica
1.6.2 Experiments by Mathematica
1.6.3 Functio Needed in The Experiments by Matlab
1.6.4 Experiments by Matlab
2 Interpolating
2.1 Introduction
2.2 Basic Concepts
2.3 Lagrange Interpolation
2.3.1 Linear and Parabolic Interpolation
2.3.2 Lagrange Interpolation Polynomial
2.3.3 Interpolation Remainder and Error Estimate
2.4 Divided-differences and Newton Interpolation
2.5 Differences and Newton Difference Formulae
2.5.1 Differences
2.5.2 Newton Difference Formulae
2.6 Hermite Interpolation
2.7 Piecewise Low Degree Interpolation
2.7.1 Ill-posed Properties of High Degree Interpolation
2.7.2 Piecewise Linear Interpolation
2.7.3 Piecewise Interpolation of Hermite with Degree Three
2.8 Cubic Spline Interpolation
2.8.1 Definition of Cubic Spline
2.8.2 The Cotruction of Cubic Spline
2.9 Computer Experiments
2.9.1 Functio Needed in The Experiments by Mathematica
2.9.2 Experiments by Mathematica
3 Best Approximation
3.1 Introduction
3.2 Norms
3.2.1 Vector Norms
3.2.2 Matrix Norms
3.3 Spectral Radius
3.4 Best Linear Approximation
3.4.1 Basic Concepts and Theories
3.4.2 Best Linear Approximation
3.5 Discrete Least Squares Approximation
3.6 Least Squares Approximation and Orthogonal Polynomials
3.7 Computer Experiments
3.7.1 Functio Needed in The Experiments by Mathematica
3.7.2 Experiments by Mathematica
3.7.3 Functio Needed in The Experiments by Matlab
3.7.4 Experiments by Matlab
4 Numerical Integration and Differentiation
4.1 Introduction
4.2 Interpolatory Quadratures
4.2.1 Interpolatory Quadratures
4.2.2 Degree of Accuracy
4.3 Newton-Cotes Quadrature Formula
4.4 Composite Quadrature Formula
4.4.1 Composite Trapezoidal Rule
4.4.2 Composite Simpson's Rule
4.5 Romberg Integration
4.5.1 Recuive Trapezoidal Rule
4.5.2 Romberg Algorithm
4.5.3 Richardson's Extrapolation
4.6 Gaussian Quadrature Formula
4.7 Numerical Differentiation
4.7.1 Numerical Differentiation
4.7.2 Differentiation Polynomial Interpolation
4.7.3 Richardson's Extrapolation
4.8 Computer Experiments
4.8.1 Functio Needed in The Experiments by Mathematica
4.8.2 Experiments by Mathematica
4.8.3 Experiments by Matlab
5 Solution of Nonlinear Equatio
5.1 Introduction
5.2 Basic Theories
5.3 Bisection Method
5.4 Iterative Method and Its Convergence
5.4.1 Fixed Point and Iteration
5.4.2 Global Convergence
5.4.3 Local Convergence
5.4.4 Order of Convergence
5.5 Accelerating Convergence
5.6 Newton's Method
5.6.1 Newton's Method and Its Convergence
5.6.2 Reduced Newton Method and Newton's Descent Method
5.6.3 The Case of Multiple Roots
5.7 Secant Method and Muller Method
5.7.1 Secant Method
5.7.2 Muller Method
5.8 Systems of Nonlinear Equatio
5.9 Computer Experiments
5.9.1 Functio Needed in The Experiments by Mathematica
5.9.2 Experiments by Mathematica
5.9.3 Experiments by Matlab
6 Direct Methods for Solving Linear Systems
6.1 Introduction
6.2 Gaussian Elimination
6.2.1 Basic Gaussian Elimination
6.2.2 Triangular Decomposition
6.3 Gaussian Elimination with Column Pivoting
6.4 Methods of The Triangular Decomposition
6.4.1 The Direct Methods of The Triangular Decomposition
6.4.2 The Square Root Method
6.4.3 The Speedup Method
6.5 Analysis of Round-off Erro
6.5.1 Condition Number
6.5.2 Iterative Refinement
6.6 Computer Experiments
6.6.1 Functio Needed in The Experiments by Mathematica
6.6.2 Experiments by Mathematica
6.6.3 Functio Needed in The Experiments by Matlab
6.6.4 Experiments by Matlab
7 Iterative Techniques for Solving Linear Systems
7.1 Introduction
7.2 Basic Iterative Methods
7.2.1 Jacobi Method
7.2.2 Gauss-Seidel Method
7.2.3 SOR Method .
7.3 Iterative Method Convergence
7.3.1 Basic Theorems
7.3.2 Some Special Systems of Equatio
7.4 Computer Experiments
7.4.1 Functio Needed in The Experiments by Mathematica
7.4.2 Experiments by Mathematica
8 Numerical Solution of Ordinary Differential Equatio
8.1 Introduction
8.2 The Existence and Uniqueness of Solutio
8.3 Taylor-Series Method
8.4 Euler's Method
8.5 Single-step Methods
8.5.1 Single-step Methods
8.5.2 Local Truncation Error
8.6 Runge-Kutta Methods
8.6.1 Second-Order Runge-Kutta Method
8.6.2 Fourth-Order Runge-Kutta Method
8.7 Multistep Methods
8.7.1 General Formulas of Multistep Methods
8.7.2 Adams Explicit and Implicit Formulas
8.8 Systems and Higher-Order Differential Equatio
8.8.1 Vector Notation
8.8.2 Taylor-Series Method for Systems
8.8.3 Fourth-Order Runge-Kutta Formula for Systems
8.9 Computer Experiments
8.9.1 Functio Needed in The Experiments by Mathematica
8.9.2 Experiments by Mathematica
附錄
附錄A Mathematica基本操作
附錄B Matlab基本操作
附錄C Awe to Selected Problems
參考文獻(xiàn)
圖書封面
評論、評分、閱讀與下載