出版時間:2012-11 出版社:機械工業(yè)出版社 作者:Kenneth H.Rosen 頁數(shù):944
Tag標(biāo)簽:無
內(nèi)容概要
《離散數(shù)學(xué)及其應(yīng)用(英文版第7版)》是介紹離散數(shù)學(xué)理論和方法的經(jīng)典教材,已經(jīng)成為采用率最高的離散數(shù)學(xué)教材,被美國眾多名校用作教材,獲得了極大的成功。本書中文版也已被國內(nèi)大學(xué)廣泛采用為教材。作者參考用書教師和學(xué)生的反饋,并結(jié)合自身對教育的洞察,在第7版中做了大量的改進,使其成為更有效的教學(xué)工具。本書可作為1~2個學(xué)期的離散數(shù)學(xué)課程教材,適用于數(shù)學(xué)、計算機科學(xué)、計算機工程、信息技術(shù)等專業(yè)的學(xué)生。
作者簡介
作者:(美)羅森
書籍目錄
preface iv
about theauthor xiii
the companion website xiv
to the studentxvi
list of symbols xix
1 the foundations:logic and proofs
1.1 propositional logic
1.2 applications of propositional logic
1.3 propositional equivalences
1.4 predicates andquantifiers
1.5 nested quantifiers
1.6 rules of inference
1.7 introduction to proofs
1.8 proofmethods and strategy
end-of-chaptermaterial-
2 basic structures:sets,functions,sequences,sums,and
matrices
2.1 sets
2.2 set operations
2.3 functions
.2.4 sequences and summations
2.5 cardinality of sets
2.6 matrices
end-of-chaptermaterial
3 algorithms
3.1 algorithms
3.2 the growth of functions
3.3 complexity of algofithms
end-of-chapter material
4 number theory and cryptography
4.1 divisibilitv andmodular arithmetic
4.2 integer representations andalgorithms
4.3 primesand greatest common divisors
4.4 solving congruences
4.5 applications of congruences
4.6 cryptography
end-of-chapter material
5 induction and recursion
5.1 mathematical induction
5.2 strong induction and well-ordering
5.3 recursive definitions and structural induction
5.4 recursive algorithms
5.5 program correctness
end-of-chapter material
6 counting
6.1 tlle basics of counting
6.2 the pigeonhole principle
6.3 permutations and combinations
6.4 binomial coefficients and identities
6.5 generalized permutations and combinations
6.6 generating permutations and combinations
end-of-chapter material
7 discrete probability
7.1 an introduction to discrete probability
7.2 probability theory
7.3 bayes’theorem
7.4 expected value and variance
end-of-chapter material
8 advanced counring technigues
8.1 applications of recurrence relations
8.2 solving linear recurrence relations
8.3 divide-and-conquer algorithms and recurrence
relations
8.4 generating functions
8.5 inclusion-exclusion
8.6 applications of inclusion-exclusion
end—of-chapter material
9 relations
9.1 relations and their properties
9.2 n-ary relations and theirapplications
9.3 representing relations
9.4 closures of relations
9.5 equivalence relations
9.6 partial orderings
end-of-chapter material
10 graphs
10.1 graphs andgraphmodels
10.2 graph terminology and special types of graphs
10.3 representing graphs and graph isomorphism
10.4 connectivity
10.5 eulerandhamiltonpaths
10.6 shortest.pathproblems
10.7 planargraphs
10.8 graphcoloring
end-of-chapter material
11 trees
11.1 introduction to trees
11.2 applications of trees
11.3 tree travcrsal
11.4 spanning trees
11.5 minimum spanning trees
end-of-chapter material
12 boolean algebra
12.1 boolean functions
12.2 representing boolean functions
12.3 logic gates
12.4 minimization of circuits
end-of-chapter material
13 modeling cornputation
13.1 languagesand grammars
13.2 finite-state machines with output
13.3 finite-state machines with no output
13.4 languagerecognition
13.5 turing machines
end-of-chapter material
appendixes
1 axioms for the real numbers and the positive
integers
2 exponential and logarithmic functions
3 pseudocode
suggestedreadings b-1
answers to odd-numbered exercises s-1
photo credits c-1
index ofbiographies i-1
index i-2
圖書封面
圖書標(biāo)簽Tags
無
評論、評分、閱讀與下載
離散數(shù)學(xué)及其應(yīng)用 PDF格式下載