00004, tushu007.com
<O QO00dn>>

gobooo

Jod<<ggod>>

1300 ISBNUO O [9787111341963
1000 ISBNO 0 10 7111341961
0doodo2011-6
gooooboooogooao
000 0O 0O O Stephen R. Schach
0 0 0667

guooobobbogooooopbrbbbggoooobbbgooooon

00000000 http://www.tushu007.com

Page 1

00004, tushu007.com
<O QO00dn>>

goon

ooooobobobobobgoog@@uo.osg)yboooooooooo@obooboboo
OOo)yooooooobobobobobooobooooog

ooooobobobobobobog@uobo.osg)yboboooooooobooboboboo
gobobbbudgoogobobbodadd
gobboobbboogogobbobbidoodobobobboooooobobobbooga
U

OO0000o0osoooooooboobobobOobOo(@Uub.bosO)y ooboboboboooooo
gobbobboogoooboboobobboooooooboooo

Page 2

00004, tushu007.com
<O QO00dn>>

goon

[0 O Stephen R.

SchachD 19720 0 000000000 ODOODOOOOI9B00000O0ODOODOODOODOOOODOO
OO0000000000DO0DOO0DOO0DOOooooooon

0000000000000 DO0DO0DO000DO0oD0D0000O00bOO0bOOoDOOoDOooDg
OO00000000D0OO0DOO0DOO0DoOooDO0oo0oooooon

Page 3

00004, tushu007.com
<O 00g>>

good

preface iv

chapter] 1 the scope of software engineering

(I learning objectives

00 O 1.1 historical aspects

[O 1.2 economic aspects

O O 1.3 maintenance aspects

0 O O 1.3.1 classical and modern views of maintenance
00 O O 1.3.2 the importance of postdelivery maintenance
0 O 1.4 requirements, analysis, and design aspects

(0 O 1.5 team development aspects

0 O 1.6 why there is no planning phase

00 O 1.7 why there is no testing phase

0 [0 1.8 why there is no documentation phase

[0 O 1.9 the object-oriented paradigm

[0 O 1.10 the object-oriented paradigm in perspective
(0 O 1.11 terminology

[0 O 1.12 ethical issues

O O chapter review

O O for further reading

O O key terms

O O problems

O O references

part a [] software engineering concepts

chapter 2[1 software life-cycle models

[learning objectives

00 O 2.1 software development in theory

0 O 2.2 winburg mini case study

[O 2.3 lessons of the winburg mini case study

0 O 2.4 teal tractors mini case study

O O 2.5 iteration and incrementation

O O 2.6 winburg mini case study revisited

0 [0 2.7 risks and other aspects of iteration and incrementation
0J [0 2.8 managing iteration and incrementation

00 O 2.9 other life-cycle models

0 O O 2.9.1 code-and-fix life-cycle model

0 O O 2.9.2 waterfall life-cycle model

00 O O 2.9.3 rapid-prototyping life-cycle model

00 O O 2.9.4 open-source life-cycle model

0 O O 2.9.5 agile processes

0 O O 2.9.6 synchronize-and-stabilize life-cycle model
0 O 0O 2.9.7 spiral life-cycle model

(0 O 2.10 comparison of life-cycle models

O O chapter review

O O for further reading

0 O key terms

Page 4

<< gtt>>

O O problems

O O references

chapter 3[1 the software process
chapter 4[] teams

chapter 51 the tools of the trade
chapter 607 testing

chapter 700 from modules to objects
chapter 8[1 reusability and portability
chapter 90 planning and estimating
chapter 1000 key material from part a
chapter 1100 requirements

chapter 12[7 classical analysis
chapter 13[J object-oriented analysis
chapter 147 design

chapter 1500 implementation
chapter 160J postdelivery maintenance
chapter 1701 more on uml

chapter 18] emerging technologies
bibliography

appendix

author index

subject index

O

00

00004, tushu007.com

Page 5

00004, tushu007.com
<O 00g>>

good

00000 DO O Aword used on almost every page of this book is software. Software consists of not just code in
machine-readable form but also all the documentation that is an intrinsic com- ponent of every project. Software
includes the specification document, the design docu- ment, legal and accounting documents of all kinds, the
software project management plan, and other management documents as well as all types of manuals. Since the
1970s, the difference between a program and a system has become blurred. In the "good old days;' the distinction
was clear. A program was an autonomous piece of code, generally in the form of a deck of punched cards that
could be executed. A system was a related collection of programs. A system might consist of programs P, Q, R, and
S. Magnetic tape Twas mounted, and then program Pwas run. It caused a deck of data cards to be read in and
produced as output tapes T2 and Ta. Tape T2 then was rewound, and pro- gram Q was run, producing tape T4 as
output. Program R now merged tapes Ta and T4 into tape Ts; Ts served as input for program S, which printed a
series of reports.Compare that situation with a product, running on a machine with a front-end com- munications
processor and a back-end database manager, that performs real-time control of a steel mill. The single piece of
software control]

ling the steel mill does far more than the old-fashioned system, but in terms of the classic definitions of program
and system, this software undoubtedly is a program. To add to the confusion, the term system now is also used to
denote the hardware-software combination. For example, the flight control system in an aircraft consists of both
the in-flight computers and the software running on them. Depending on who is using the term, the flight control
system also may include the controls, such as the joystick, that send commands to the computer and the parts of
the aircraft, such as the wing flaps, controlled by the computer. Furthermore, within the context of traditional
software development, the term systems analysis refers to the first two phases O requirements and analysis phases(]
and systems design refers to the third phase O design phasel] .To minimize confusion, this book uses the term
product to denote a nontrivial piece of software. There are two reasons' for this convention. The first is simply to
obviate the pro- gram versus system confusion by using a third term. The second reason is more important. This
book deals with the process of software production, that is, the way we produce soft- ware, and the end result of a
process is termed a product. Finally, the term system is used in its modem sense, that is, the combined hardware
and software, or as part of universally accepted phrases, such as operating system and management information
system.Two words widely used within the context of software engineering are methodology and paradigm. In the
1970s, the word methodology began to be used in the sense of "a way of developing a software product”; the word
actually means the "science of meth- ods."

Page 6

00004, tushu007.com
<O QO00dn>>

goon

Page 7

00004, tushu007.com
<O QO00dn>>

goon
gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 8

