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In the time since the 1986 edition of this book, the world of compiler designhas changed significantly.
Programming languages have evolved to present newcompilation problems. Computer architectures offer a variety
of resources ofwhich the compiler designer must take advantage. Perhaps most interestingly,the venerable
technology of code optimization has found use outside compilers.It is now used in tools that find bugs in software,
and most importantly, findsecurity holes in existing code. And much of the "front-end" technology —
—qgrammars, regular expressions, parsers, and syntax-directed translators —— arestill in wide use.Thus, our
philosophy from previous versions of the book has not changed.We recognize that few readers will build, or even
maintain, a compiler for amajor programming language. Yet the models, theory, and algorithms associ-ated with a
compiler can be applied to a wide range of problems in softwaredesign and software development. We therefore
emphasize problems that aremost commonly encountered in designing a language processor, regardless ofthe
source language or target machine.Use of the Booklt takes at least two quarters or even two semesters to cover all or
most of thematerial in this book. It is common to cover the first half in an undergraduatecourse and the second half
of the book —— stressing code optimization —— ina second course at the graduate or mezzanine level. Here is an
outline of thechapters:Chapter 1 contains motivational material and also presents some backgroundissues in
computer architecture and programming-language principles.Chapter 2 develops a miniature compiler and
introduces many of the impor-taut concepts, which are then developed in later chapters. The compiler itselfappears
in the appendix.Chapter 3 covers lexical analysis, regular expressions, finite-state machines, andscanner-generator
tools. This material is fundamental to text-processing of allsorts.
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[0 O O Languagel, are used to search databases. Database queries consist of predicatescontaining relational and
boolean operators. They can be interpreted or com-piled into commands to search a database for records satisfying
that predicate.Compiled SimulationSimulation is a general technique used in many scientific and engineering
disci-plines to understand a phenomenon or to validate a design. Inputs to a simula-tor usually include the
description of the design and specific input parametersfor that particular simulation run. Simulations can be very
expensive. We typi-cally need to simulate many possible design alternatives on many different inputsets, and each
experiment may take days to complete on a high-performancemachine. Instead of writing a simulator that
interprets the design, it is fasterto compile the design to produce machine code that simulates that particulardesign
natively. Compiled simulation can run orders of magnitude faster thanan interpreter-based approach. Compiled
simulation is used in many state-of-the-art tools that simulate designs written in VVerilog or VHDL.1.5.5 Software
Productivity ToolsPrograms are arguably the most complicated engineering artifacts ever pro-duced; they consist
of many many details, every one of which must be correctbefore the program will work completely. As a result,
errors are rampant inprograms; errors may crash a system, produce wrong results, render a systemvulnerable to
security attacks, or even lead to catastrophic failures in criticalsystems. Testing is the primary technique for locating
errors in programs.An interesting and promising complementary approach is to use data-flowanalysis to locate
errors statically O that is, before the program is runlJ . Data-flow analysis can find errors along all the possible
execution paths, and notjust those exercised by the input data sets, as in the case of program testing.Many of the
data-flow-analysis techniques, originally developed for compileroptimizations, can be used to create tools that
assist programmers in theirsoftware engineering tasks. The problem of finding all program’errors is undecidable. A
data-flow anal-ysis may be designed to warn the programmers of all possible statements witha particular category of
errors. But if most of these warnings are false alarms,users will not use the tool. Thus, practical error detectors are
often neithersound nor complete. That is, they may not find all the errors in the program,and not all errors
reported are guaranteed to be real errors. Nonetheless, var-ious static analyses have been developed and shown to
be effective in findingerrors, such as dereferencing null or freed pointers, in real programs. The factthat error
detectors may be unsound makes them significantly different fromcompiler optimizations. Optimizers must be
conservative and cannot alter thesemantics of the program under any circumstances.
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