00004, tushu007.com
<O QO00dn>>

gobooo

Jod<<ggod>>

1300 ISBNUO O [9787111326748

1000 ISBNO O 10 7111326741

gudodoo2011-1

gooooboooogooao

00 O O Alfred V. Aho,Monica S. Lam,Ravi Sethi,Jeffrey D. Ullman
0 O 0O 1009

guooobobbogooooopbrbbbggoooobbbgooooon

00000000 http://www.tushu007.com

Page 1

00004, tushu007.com
<O 00g>>

gd

In the time since the 1986 edition of this book, the world of compiler designhas changed significantly.
Programming languages have evolved to present newcompilation problems. Computer architectures offer a variety
of resources ofwhich the compiler designer must take advantage. Perhaps most interestingly,the venerable
technology of code optimization has found use outside compilers.It is now used in tools that find bugs in software,
and most importantly, findsecurity holes in existing code. And much of the "front-end" technology —
—qgrammars, regular expressions, parsers, and syntax-directed translators —— arestill in wide use.Thus, our
philosophy from previous versions of the book has not changed.We recognize that few readers will build, or even
maintain, a compiler for amajor programming language. Yet the models, theory, and algorithms associ-ated with a
compiler can be applied to a wide range of problems in softwaredesign and software development. We therefore
emphasize problems that aremost commonly encountered in designing a language processor, regardless ofthe
source language or target machine.Use of the Booklt takes at least two quarters or even two semesters to cover all or
most of thematerial in this book. It is common to cover the first half in an undergraduatecourse and the second half
of the book —— stressing code optimization —— ina second course at the graduate or mezzanine level. Here is an
outline of thechapters:Chapter 1 contains motivational material and also presents some backgroundissues in
computer architecture and programming-language principles.Chapter 2 develops a miniature compiler and
introduces many of the impor-taut concepts, which are then developed in later chapters. The compiler itselfappears
in the appendix.Chapter 3 covers lexical analysis, regular expressions, finite-state machines, andscanner-generator
tools. This material is fundamental to text-processing of allsorts.

Page 2

00004, tushu007.com
<O QO00dn>>

goon

gobboobboooooobobbobbboooooobooboobo® odr” o
gboogbooisebogooboobogbobooboobbooboobbooboobbon
gobbobbbudggogobbobbbdgooogoboobbboooooobobbouga
gobobbobbodgoogobboobbooogg

gobz2o0bbbudogguoboboobboogoooobbobbbuoooon
gobbobbbuooooobbobbboooooobboooo
goboboobboogooobobobobbdodooooboboobobboooooon
gobbobboogooobobobbooda

gobobobobbooooooboboobbtooooooobobbooooooonbbobboooa
gobooboodd

O0cdO0OOOODOOO
00 comptiaproject+0 O 0O OO O

gt- Dbhobobooogoooon

gt- Dobbboooogogon

Page 3

00004, tushu007.com
<O QO00dn>>

goon

Alfred

VoAU OODOOOUOOOOoOoOooOooooOObOUODbDOACMOIEEEDDODOODOIEEED O OO
ERERE

gobbobbbugoogbobbobbbodoooobobobbuoooooon

Page 4

00004, tushu007.com
<O 00g>>

good

1 introduction

[0 1.1 language processors

[0 1.2 the structure of a compiler

[0 1.3 the evolution of programming languages
[0 1.4 the science of building a compiler

[0 1.5 applications of compiler technology
0 1.6 programming language basics

(1 1.7 summary of chapter 1

(1 1.8 references for chapter 1

2 a simple syntax-directed translator

[2.1 introduction

[2.2 syntax definition

[0 2.3 syntax-directed translation

[J 2.4 parsing

[0 2.5 a translator for simple expressions

[J 2.6 lexical analysis

[J 2.7 symbol tables

[0 2.8 intermediate code generation

[0 2.9 summary of chapter 2

3 lexical analysis

(1 3.1 the role of the lexical analyzer

0 3.2 input buffering

(1 3.3 specification of tokens

[0 3.4 recognition of tokens

[0 3.5 the lexical-analyzer generator lex

[J 3.6 finite automata

[3.7 from regular expressions to automata
(1 3.8 design of a lexical-analyzer generator
[3.9 optimization of dfa-based pattern matchers
[J 3.10 summary of chapter 3

[3.11 references for chapter 3

4 syntax analysis

0 4.1 introduction

[0 4.2 context-free grammars

[J 4.3 writing a grammar

[4.4 top-down parsing

[4.5 bottom-up parsing

[0 4.6 introduction to Ir parsing: simple Ir
[0 4.7 more powerful Ir parsers

[0 4.8 using ambiguous grammars

(1 4.9 parser generators

(0 4.10 summary of chapter 4

[0 4.11 references for chapter 4

5 syntax-directed translation

[5.1 syntax-directed definitions

Page 5

00004, tushu007.com
<O 00g>>

[J 5.2 evaluation orders for sdd's

[5.3 applications of syntax-directed translation
[5.4 syntax-directed translation schemes
(0 5.5 hnplementing |-attributed sdd’s

[J 5.6 summary of chapter 5

[0 5.7 references for chapter 5

6 intermediate-code generation

[0 6.1 variants of syntax trees

[J 6.2 three-address code

[6.3 types and declarations

[6.4 translation of expressions

[6.5 type checking

[J 6.6 control flow

[J 6.7 backpatching

[J 6.8 switch-statements

[6.9 intermediate code for procedures

[0 6.10 summary of chapter 6

[6.11 references for chapter 6

7 run-time environments

[J 7.1 storage organization

[7.2 stack allocation of space

[J 7.3 access to nonlocal data on the stack

[7.4 heap management

[0 7.5 introduction to garbage collection

[J 7.6 introduction to trace-based collection
[0 7.7 short-pause garbage collection

[0 7.8 advanced topics in garbage collection
(1 7.9 summary of chapter 7

[7.10 references for chapter 7

8 code generation

(1 8.1 issues m the design of a code generator
[8.2 the target language

[8.3 addresses in the target code

[8.4 basic blocks and flow graphs

[J 8.5 optimization of basic blocks

[J 8.6 a simple code generator

[J 8.7 peephole optimization

[J 8.8 register allocation and assignment

(1 8.9 instruction selection by tree rewriting
(1 8.10 optimal code generation for expressions
[8.11 dynamic programming code-generation
[0 8.12 summary of chapter 8

[J 8.13 references for chapter 8

9 machine-independent optimizations

[0 9.1 the principal sources of optimization
1 9.2 introduction to data-flow analysis

(1 9.3 foundations of data-flow analysis

Page 6

00004, tushu007.com
<O 00g>>

[0 9.4 constant propagation

[J 9.5 partial-redundancy elimination

[1 9.6 loops in flow graphs

(1 9.7 region-based analysis

[1 9.8 symbolic analysis

[0 9.9 summary of chapter 9

[0 9.10 references for chapter 9

10 instruction-level parallelism

[0 10.1 processor architectures

(1 10.2 code-scheduling constraints

(1 10.3 basic-block scheduling

(1 10.4 global code scheduling

[10.5 software pipelining

(1 10.6 summary of chapter 10

[10.7 references for chapter 10

11 optimizing for parallelism and locality

(] 11.1 basic concepts

0 11.2 matrix multiply: an in-depth example
[11.3 iteration spaces

[11.4 aftlne array indexes

[J 11.5 data reuse

[0 11.6 array data-dependence analysis

[0 11.7 finding synchronization-free parallelism
(] 11.8 synchronization between parallel loops
[0 11.9 pipelining

[0 11.10 locality optimizations

[0 11.11 other uses of affine transforms

(0 11.12 summarv of chapter 11

(1 11.13 references for chapter 11

12 interprocedural analysis

(1 12.1 basic concepts

0 12.2 why interprocedural analysis?

[0 12.3 alogical representation of data flow
[0 12.4 a simple pointer-analysis algorithm
[12.5 context-insensitive interprocedural analysis
[12.6 context-sensitive pointer analysis

[J 12.7 datalog implementation by bdd's

[J 12.8 summary of chapter 12

(1 12.9 references for chapter 12
aacomplete frontend

[0 a.1 the source language

[J a.2 main

[0 a.3 lexical analyzer

[0 a.4 symbol tables and types

[0 a.5 intermediate code for expressions

[a.6 jumping code for boolean expressions
[a.7 intermediate code for statements

Page 7

00004, tushu007.com
<O QO00dn>>

[J a.8 parser
(1 a.9 creating the front end
b finding linearly independent solutions

index

Page 8

00004, tushu007.com
<O 00g>>

good

[0 O O Languagel, are used to search databases. Database queries consist of predicatescontaining relational and
boolean operators. They can be interpreted or com-piled into commands to search a database for records satisfying
that predicate.Compiled SimulationSimulation is a general technique used in many scientific and engineering
disci-plines to understand a phenomenon or to validate a design. Inputs to a simula-tor usually include the
description of the design and specific input parametersfor that particular simulation run. Simulations can be very
expensive. We typi-cally need to simulate many possible design alternatives on many different inputsets, and each
experiment may take days to complete on a high-performancemachine. Instead of writing a simulator that
interprets the design, it is fasterto compile the design to produce machine code that simulates that particulardesign
natively. Compiled simulation can run orders of magnitude faster thanan interpreter-based approach. Compiled
simulation is used in many state-of-the-art tools that simulate designs written in VVerilog or VHDL.1.5.5 Software
Productivity ToolsPrograms are arguably the most complicated engineering artifacts ever pro-duced; they consist
of many many details, every one of which must be correctbefore the program will work completely. As a result,
errors are rampant inprograms; errors may crash a system, produce wrong results, render a systemvulnerable to
security attacks, or even lead to catastrophic failures in criticalsystems. Testing is the primary technique for locating
errors in programs.An interesting and promising complementary approach is to use data-flowanalysis to locate
errors statically O that is, before the program is runlJ . Data-flow analysis can find errors along all the possible
execution paths, and notjust those exercised by the input data sets, as in the case of program testing.Many of the
data-flow-analysis techniques, originally developed for compileroptimizations, can be used to create tools that
assist programmers in theirsoftware engineering tasks. The problem of finding all program’errors is undecidable. A
data-flow anal-ysis may be designed to warn the programmers of all possible statements witha particular category of
errors. But if most of these warnings are false alarms,users will not use the tool. Thus, practical error detectors are
often neithersound nor complete. That is, they may not find all the errors in the program,and not all errors
reported are guaranteed to be real errors. Nonetheless, var-ious static analyses have been developed and shown to
be effective in findingerrors, such as dereferencing null or freed pointers, in real programs. The factthat error
detectors may be unsound makes them significantly different fromcompiler optimizations. Optimizers must be
conservative and cannot alter thesemantics of the program under any circumstances.

Page 9

00004, tushu007.com
<O QO00dn>>

goon

Ooooo@oo- b20)ooooobo

Page 10

00004, tushu007.com
<O QO00dn>>

goon
gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 11

