出版時(shí)間:2010-9 出版社:機(jī)械工業(yè)出版社 作者:弗里德曼 頁數(shù):442
Tag標(biāo)簽:無
內(nèi)容概要
本書是一本優(yōu)秀的統(tǒng)計(jì)模型教材,著重講解線性模型的應(yīng)用問題,包括廣義最小二乘和兩步最小二乘模型,以及二分變量的probit及l(fā)ogit模型的應(yīng)用,還包括關(guān)于研究設(shè)計(jì)、二分變量回歸及矩陣代數(shù)的背景知識(shí)。 這還是一本鼓舞人心的而又易讀的書,無論是老師還是學(xué)生都會(huì)從中受益。
作者簡介
(美)弗里德曼,是加州大學(xué)伯克利分校的統(tǒng)計(jì)學(xué)教授、杰出的數(shù)理統(tǒng)計(jì)學(xué)家。其研究范圍包括鞅不等式分析、Markov過程、抽樣、自助法等。他是美國科學(xué)學(xué)院士。在2003年。美國科學(xué)院授予他John J.Carty科學(xué)進(jìn)步獎(jiǎng),以表彰他對統(tǒng)計(jì)理論和實(shí)踐做出的貢獻(xiàn)。
書籍目錄
Foreword to the ReVised EditionPreface1 Observational Studies and Experiments 1.1 Introduction 1.2 The HIP trial 1.3 Snow on cholera 1.4 Yule on the causes of poverty Exercise set A 1.5 End notes 2 The Regression Line 2.1 Introduction 2.2 The regression line 2.3 Hooke's law Exercise set A 2.4 Complexities 2.5 Simple vs multiple regression Exercise set B 2.6 End notes3 Matrix Algebra 3.1 Introduction Exercise set A 3.2 Determinants and inverses Exercise set B 3.3 Random vectors Exercise set C 3.4 Positive definite matrices Exercise set D 3.5 The normal distribution Exercise set E 3.6 If you want a book on matrix algebra4 Multiple Regression 4.1 Introduction Exercise set A 4.2 Standard errors Things we don't need Exercise set B 4.3 Explained variance in multiple regression Association or causation? Exercise set C 4.4 What happens to OLS if the assumptions break down? 4.5 Discussion questions 4.6 End notes5 Multiple Regression: Special Topics 5.1 Introduction 5.2 OLSisBLUE Exercise set A 5.3 Generalized least squares Exercise set B 5.4 Examples on GLS Exercise set C 5.5 What happens to GLS if the assumptions break down? 5.6 Normal theory Statistical significance Exercise set D 5.7 The F-test "The" F-test in applied work Exercise set E 5.8 Data snooping Exercise set F 5.9 Discussion questions 5.10 End notes6 Path Models 6.1 Stratification Exercise set A 6.2 Hooke's law revisited Exercise set B 6.3 Political repression during the McCarthy era Exercise set C 6.4 Inferring causation .by regression Exercise set D 6.5 Response schedules for path diagrams Selection vs intervention Structural equations and stable parameter:Ambiguity in notation Exercise set E 6.6 Dummy variables Types of variables 6.7 Discussion questions 6.8 End notes7 Maximum Likelihood 7.1 Introduction Exercise set A 7.2 Probit models Why not regression? The latent-variable formulation Exercise set B Identification vs estimation What if the Ui are N? Exercise set C 7.3 Logit models Exercise set D 7.4 The effect of Catholic schools Latent variables Response schedules The second equation Mechanics: bivariate probit Why a model rather than a cross-lab? Interactions More on table 3 in Evans and Schwab More on the second equation Exercise set E 7.5 Discussion questions 7.6 End notes8 The Bootstrap 8.1 Introduction Exercise set A 8.2 Bootstrapping a model for energy demand Exercise set B 8.3 End notes9 Simultaneous Equations 9.1 Introduction Exercise set A 9.2 Instrumental variables Exercise set B 9.3 Estimating the butter model Exercise set C 9.4 What are the two stages? Invariance assumptions 9.5 A social-science example: education and fertility More on Rindfuss et al 9.6 Covariates 9.7 Linear probability models The assumptions The questions Exercise set D 9.8 More on IVLS Some technical issues Exercise set E Simulations to illustrate IVLS 9.9 Discussion questions 9.10 End notes10 Issues in Statistical Modeling 10.1 Introduction The bootstrap The role of asymptotics Philosophers' stones The modelers' response 10.2 Critical literature 10.3 Response schedules 10.4 Evaluating the models in chapters 7-9 10.5 Summing upReferencesAnswers to ExercisesThe Computer LabsAppendix: Sample MATLAB CodeReprints Gibson on McCarthy Evans and Schwab on Catholic Schools Rindfuss et al on Education and Fertility Schneider et al on Social CapitalIndex
圖書封面
圖書標(biāo)簽Tags
無
評論、評分、閱讀與下載