出版時(shí)間:2006-1 出版社:機(jī)械工業(yè)出版社 作者:塞普瑟 頁數(shù):437
Tag標(biāo)簽:無
內(nèi)容概要
《計(jì)算理論導(dǎo)引(英文版)(第2版)(新版)》由計(jì)算機(jī)理論領(lǐng)域的知名權(quán)威Michaael Sipser所撰寫。他以獨(dú)特的視角,系統(tǒng)地介紹了計(jì)算機(jī)理論的三個(gè)主要內(nèi)容:自動(dòng)機(jī)與語言、可計(jì)算性理論和計(jì)算復(fù)雜性理論。約大部分內(nèi)容是基本的,同時(shí)對(duì)可計(jì)算性和計(jì)算復(fù)雜性理論中的某些高級(jí)內(nèi)容進(jìn)行了重點(diǎn)介紹。作者以清新的筆觸、生動(dòng)的語言給出了寬泛的數(shù)學(xué)原理,而沒有拘泥于某些低層次的細(xì)節(jié)。在證明之前,均有“證明思路”,幫助讀者理解數(shù)學(xué)形式下涵的概念。同樣,對(duì)于算法描述,均以直觀的文字而非偽代碼給出,從而將注意力集中于算法本身,而不是某些模型。新版根據(jù)多年來使用本書的教師和學(xué)生的建議進(jìn)行了改進(jìn),并對(duì)課堂測(cè)試題進(jìn)行了全面的更新,每章末均有樣例解答?! 队?jì)算理論導(dǎo)引(英文版)(第2版)(新版)》可作為計(jì)算機(jī)專業(yè)高年級(jí)本科生和研究生的教材,也可作為教師和研究人員的參考書。
作者簡(jiǎn)介
作者:(美)塞普瑟Michaael Sipser:麻省理工學(xué)院應(yīng)用數(shù)學(xué)系教授,計(jì)算機(jī)科學(xué)和人工智能實(shí)驗(yàn)室(CSAIL)成員。他從事理論計(jì)算機(jī)科學(xué)與其他數(shù)學(xué)課程的教學(xué)工作25年,目前為數(shù)學(xué)系主任。他癡迷于復(fù)雜性理論,喜歡復(fù)雜性理論的教學(xué)工作。
書籍目錄
Preface to the First Edition To the student To the educator The first edition Feedback to the author AcknowledgmentsPreface to the Sceond Edition(International) 0 Introduction 0.1 Automata,CompUTABILITY,and Complexity Complexity theory Computability theory 0.2 Mathematical Notions and Terminology Sets Sequemces and tuples Functions and relations Graphs Strings and languges Boolean logic Summary of mathematical terms 0.3 Definitions,Theorems,and Proofs Finding proofs 0.4 Types of Proof Proof by construction Proof by construction Proof by induction Exercises,Problims,and SolutionsPart One:Automata and Languages 1 Regular Languages 1.1 Finite Automata Formal definition of afinite automaton Examples of finite automata Formal definition of computation Designign finite automata The regular operations 1.2 Nondeteriminism Formal definition of a nondeterministic finite automaton Equivalence of NFAs and DFAs Closure under the regular operations 1.3 Regular Expressions Formal definition of a regular expression Equivalence with finite automata 1.4 Nonregular Languages The pumping lemma for regulan languages Exercises,Problems,and Solutions 2 Context-Free Languages 2.1 Conetxt-free Grammars Formal definition of a context-free grammar Examples of context-free grammars Designing context-free grammars Ambiguity Chomaky mormal form 2.2 Pushdown Automata Formal definition of a pushdown automaton Examples of pushdown autonata Equivalence wish context-free grammars 2.3 Non-context-free Languages The pumping lemma for context-free languages Exercises,Problems,and SolutionsPart Two:Computability TheoryPart Three:Computability TheorySelected BibliographyIndex
圖書封面
圖書標(biāo)簽Tags
無
評(píng)論、評(píng)分、閱讀與下載