出版時(shí)間:2002-5 出版社:機(jī)械工業(yè) 作者:本社 頁(yè)數(shù):561
前言
本書(shū)是著名的McGraw-Hill教育出版公司于2001年在美國(guó)紐約出版的《工程電磁場(chǎng)》教科書(shū),適用于工科本科第一學(xué)期課程,也很適用于我國(guó)高等學(xué)校進(jìn)行“工程電磁場(chǎng)”課程的雙語(yǔ)教學(xué)。原書(shū)(1958年第1版)作者是美國(guó)普渡(Purdue)大學(xué)的Hayt教授,經(jīng)幾次改版,現(xiàn)在第6版增加了合作作者Buck教授。本書(shū)自第1版自起一直是美國(guó)在電磁場(chǎng)方面的暢銷書(shū)。全書(shū)行文生動(dòng)流暢,十分精練,敘述概念非常準(zhǔn)確。作者在序言中就說(shuō)明了其寫(xiě)書(shū)的原則是注重物理概念的理解和解題能力的培養(yǎng),所以寫(xiě)得很有特色,主要體現(xiàn)在以下幾點(diǎn):1.建立新概念,提出新問(wèn)題、新內(nèi)容,做到由淺入深,循序漸進(jìn),從正反兩方面分析比較。例如講到用流線描繪點(diǎn)電荷的電場(chǎng)分布時(shí),用了四個(gè)圖加以比較討論,使初學(xué)者印象深刻;又如講矢量分析一章時(shí),先說(shuō)明在研究電磁場(chǎng)的初級(jí)課程中,不用矢量分析理論也可以,只是存在缺點(diǎn)和局限性,再提出用矢量分析的必要性和優(yōu)點(diǎn),然后進(jìn)入主題,這樣可提高學(xué)生的學(xué)習(xí)興趣和緊迫感。2.講解新的物理結(jié)構(gòu)模型時(shí),先從廣泛意義上日常普遍接觸觀察到的現(xiàn)象入手。例如講解電容時(shí),先說(shuō)明只要兩個(gè)導(dǎo)體中間隔以介質(zhì),有電位差,導(dǎo)體上就會(huì)有電荷儲(chǔ)存,就產(chǎn)生了電容作用,體現(xiàn)了電容的本性。進(jìn)而再講述有特殊結(jié)構(gòu)的電容器和電容的計(jì)算方法及儲(chǔ)能公式等。這樣從感性認(rèn)識(shí)出發(fā),由表及里,達(dá)到理論高度,符合認(rèn)識(shí)規(guī)律。
內(nèi)容概要
《工程電磁場(chǎng)(英文版)(原書(shū)第6版)》講述電磁場(chǎng)基礎(chǔ)的優(yōu)秀教材,書(shū)中列舉了大量的實(shí)例與分析,使學(xué)生能夠掌握難于理解的觀念。另外,眾多的例題與思考題也使《工程電磁場(chǎng)(英文版)(原書(shū)第6版)》便于自學(xué)。
作者簡(jiǎn)介
作者:(美國(guó))威廉 H.哈伊特(William H.Hayt.Jr.) (美國(guó))約翰 A.比克(John A.Buck)
書(shū)籍目錄
PrefaceChapter 1 Vector Analysis1.1. Scalars and Vectors1.2. Vector Algebra1.3. The Cartesian Coordinate System1.4. Vector Components and Unit Vectors1.5. The Vector Field1.6. The Dot Product1.7. The Cross Product1.8. Other Coordinate Systems: Circular Cylindrical Coordinates1.9. The Spherical Coordinate SystemChapter 2 Coulomb's Law and Electric Field Intensity2.1. The Experimental Law of Coulomb2.2. Electric Field Intensity2.3. Field Due to a Continuous Volume Charge Distribution2.4. Field of a Line Charge2.5. Field of a Sheet Charge2.6. Streamlines and Sketches of FieldsChapter 3 Electric Flux Density, Gauss' Law, and Divergence3.1. Electric Flux Density3.2. Gauss' Law3.3. Applications of Gauss' Law: Some Symmetrical Charge Distributions3.4. Application of Gauss' Law: Differential Volume Element3.5. Divergence3.6. Maxwell's First Equation (Electrostatics)3.7. The Vector Operator V and the Divergence TheoremChapter 4 Energy and Potential4.1. Energy and Potential in a Moving Point Charge in an Electric Field4.2. The Line Integral4.3. Definition of Potential Difference and Potential4.4. The Potential Field of a Point Charge4.5. The Potential Field of a System of Charges: Conservative Property4.6. Potential Gradient4.7. The Dipole4.8. Energy Density in the Electric FieldChapter 5 Conductors, Dielectrics, and Capacitance5.1. Current and Current Density5.2. Continuity of Current5.3. Metallic Conductors5.4. Conductor Properties and Boundary Conditions5.5. The Method of Images5.6. Semiconductors5.7. The Nature of Dielectric Materials5.8. Boundary Conditions for Perfect Dielectric Materials5.9. Capacitance5.10. Several Capacitance Examples5.11. Capacitance of a Two-Wire LineChapter 6 Experimental Mapping Methods6.1. Curvilinear Squares6.2. The Iteration Method6.3. Current Analogies6.4. Physical ModelsChapter 7 Poisson's and Laplace's Equations7.1 Poisson's and Laplace's Equations7.2. Uniqueness Theorem7.3. Examples of the Solution of Laplace's Equation7.4. Example of the Solution of Poisson's Equation7.5. Product Solution of Laplace's EquationChapter 8 The Steady Magnetic Field8.1. Biot-Savart Law8.2. Ampere's Circuital Law8.3. Curl8.4. Stokes' Theorem8.5. Magnetic Flux and Magnetic Flux Density8.6. The Scalar and Vector Magnetic Potentials8.7. Derivation of the Steady-Magnetic-Field LawsChapter 9 Magnetic Forces, Materials and Inductance9.1. Force on a Moving Charge9.2. Force on a Differential Current Element9.3. Force Between Differential Current Elements9.4. Force and Torque on a Closed Circuit9.5. The Nature of Magnetic Materials9.6. Magnetization and Permeability9.7. Magnetic Boundary Conditions9.8. The Magnetic Circuit9.9. Potential Energy and Forces on Magnetic Materials9.10. Inductance and Mutual InductanceChapter 10 Time-Varying Fields and Maxwell's Equations10.1. Faraday's Law10.2. Displacement Current10.3. Maxwell's Equations in Point Form10.4. Maxwell's Equations in Integral Form10.5. The Retarded PotentialsChapter 11 The Uniform Plane Wave11.1. Wave Propagation in Free Space11.2. Wave Propagation in Dielectrics11.3. The Poynting Vector and Power Considerations11.4. Propagation in Good Conductors: Skin Effect11.5 Wave PolarizationChapter 12 Plane Waves at Boundaries and in Dispersive Media12.1. Reflection of Uniform Plane Waves at Normal Incidence12.2. Standing Wave Ratio12.3. Wave Reflection from Multiple Interfaces12.4. Plane Wave Propagation in General Directions12.5. Plane Wave Reflection at Oblique Incidence Angles12.6. Wave Propagation in Dispersive MediaChapter 13 Transmission Lines13.1. The Transmission-Line Equations13.2. Transmission-Line Parameters13.3. Some Transmission-Line Examples13.4. Graphical Methods13.5. Several Practical Problems13.6. Transients on Transmission LinesChapter 14 Waveguide and Antenna Fundamentals14.1. Basic Waveguide Operation14.2. Plane Wave Analysis of the Parallel-Plate Waveguide14.3. Parallel-Plate Guide Analysis Using the Wave Equation14.4. Rectangular Waveguides14.5. Dielectric Waveguides14.6. Basic Antenna PrinciplesAppendix A Vector AnalysisAppendix B UnitsAppendix C Material ConstantsAppendix D Origins of the Complex PermittivityAppendix E Answers to Selected Problems*Index
章節(jié)摘錄
插圖:A vector quantity has both a magnitudeI and a direction in space. We shallbe concerned with two- and three-dimensional spaces only, but vectors may bedefined in n-dimensional space in more advanced applications. Force, velocity,acceleration, and a straight line from the positive to the negative terminal of astorage battery are examples of vectors. Each quantity is characterized by both amagnitude and a direction.We shall be mostly concerned with scalar and vector fields. A field (scalaror vector) may be defined mathematically as some function of that vector whichconnects an arbitrary .0rigin to a general point in space. We usually find itpossible to associate some physical effect with a field, such as the force on acompass needle in the earth's magnetic field, or the movement of smoke particlesin the field defined by the vector velocity of air in some region of space. Note thatthe field concept invariably is related to a region. Some quantity is defined atevery point in a region. Both scalar fields and vector fields exist. The temperaturethroughout the bowl of soup and the density at any point in the earth areexamples of scalar fields. The gravitational and magnetic fields of the earth,the voltage gradient in a cable, and the temperature gradient. in a soldering-iron tip are examples of vector fields. The value of a field varies in generalwith both position and time.
編輯推薦
《工程電磁場(chǎng)(英文版)(原書(shū)第6版)》:時(shí)代教育·國(guó)外高校優(yōu)秀教材精選
圖書(shū)封面
評(píng)論、評(píng)分、閱讀與下載
250萬(wàn)本中文圖書(shū)簡(jiǎn)介、評(píng)論、評(píng)分,PDF格式免費(fèi)下載。 第一圖書(shū)網(wǎng) 手機(jī)版