出版時間:2009-10 出版社:高等教育出版社 作者:曹錫華,時儉益 頁數(shù):315
Tag標簽:無
前言
本書自1992年由高等教育出版社出版至今已有十七年,期間曾被多個高校用作研究生課程教材,國內(nèi)也陸續(xù)出版過數(shù)本中文版的介紹群表示理論的教材。在過去的十多年里,群表示及相關(guān)數(shù)學(xué)理論在國際上的發(fā)展日新月異,國內(nèi)學(xué)習(xí)和研究群表示理論的隊伍快速壯大,人們對于介紹群表示理論的教材也有了更高的要求和期盼。為此,利用本書再版的機會,作者除了對原版進行細致的勘誤補正外,在書的正文和習(xí)題部分都作了較大幅度的增補,特別,書中增添了介紹有限群模表示理論的四章內(nèi)容,其中包括p模系統(tǒng)(K,R,K)與Grothendieck環(huán);Brauer特征標、塊及其虧群;Brauer關(guān)于誘導(dǎo)塊的三個主要定理;頂點和源頭。正文后面所附的習(xí)題,有的直接摘自文獻,有的由文獻里的一些結(jié)果編制而成,它們將作為正文內(nèi)容的有機補充,其中有些習(xí)題內(nèi)容甚至可作為正文的一部分。例如,我們先在正文里證明了定理(7.2.1),接著,在§7.3后設(shè)計的一組習(xí)題里讓讀者將定理(7.2.1)推廣為Witt-Berman定理。隨后,在對定理(9.2.6)的證明里用到了Witt-Berman定理。讀者可通過做習(xí)題來檢驗自己對正文內(nèi)容的理解程度,對新知識的自學(xué)能力和動手解題的技巧。對于書后的“漢英對照術(shù)語索引”、“符號”和“參考文獻”,再版本也作了相應(yīng)的改變:除了增加必要的條目外,還細化了索引,例如,對于循環(huán)群、對稱群、交代群、交換群等條目,我們都列出書中多個相關(guān)出處,循著該線索,讀者可對這些概念有比較系統(tǒng)的理解。又例如,對于符號indH(X),原版本里僅解釋為“群的元素X關(guān)于子群日的指數(shù)”,再版本里說得更明白:“群的元素X關(guān)于子群日的指數(shù)舊[H:XHnH]”。
內(nèi)容概要
本書旨在介紹有限群的表示理論,其中包括群表示論的基本概念與兩條主要研究途徑的介紹。書的前八章介紹有限群的常表示理論(即在特征數(shù)不整除群的階數(shù)的域上的表示,具有完全可約性),著重論述了與群的誘導(dǎo)表示有關(guān)的一些經(jīng)典結(jié)果,同時也探討了域的選取與群表示分解之間的關(guān)系。后四章介紹有限群模表示的Brauer理論(即在特征數(shù)整除群的階數(shù)的域上的表示,一般不具備完全可約性),該理論通過p模系統(tǒng)將有限群G在特征零域上的表示理論與特征p(這里p/G)域上的表示理論聯(lián)系起來;也將G在特征零域上的特征標理論與G的p局部結(jié)構(gòu)聯(lián)系起來。本書為求自成系統(tǒng),在第一章用較大篇幅簡要地敘述了與群表示論有關(guān)的一些預(yù)備知識,特別是介紹了有限維代數(shù)的結(jié)構(gòu)與表示理論。本書每節(jié)后都附有足夠多的習(xí)題幫助讀者理解與拓廣正文的內(nèi)容。 本書假定讀者已經(jīng)熟悉線性代數(shù)理論,并具備群論,環(huán)論與域的伽羅華理論方面的最基本知識。本書可作為研究生與高年級本科生的教科書,也可供有關(guān)專業(yè)的數(shù)學(xué)工作者與高校教師閱讀。
書籍目錄
第一章 群表示論的預(yù)備知識 §1.1 群論的基本概念 §1.2 域的基本概念 §1.3 F代數(shù)的基本概念 §1.4 F代數(shù)上模的分解 §1.5 半單代數(shù)及其正則模的分解 §1.6 半單代數(shù)的判則 §1.7 半單代數(shù)的結(jié)構(gòu)定理 §1.8 F代數(shù)上模的同態(tài)空間HomA(L,M) §1.9 F代數(shù)上模的張量積 §1.10 F上中心單代數(shù)及其分裂域 §1.11 范疇論的基本概念第二章 群表示的基本概念 §2.1 群表示的基本概念 §2.2 群表示的一些常用構(gòu)造法 §2.3 表示在不同群之間的合成與轉(zhuǎn)換 §2.4 表示的可約性 §2.5 群的表示環(huán)第三章 代數(shù)表示理論的應(yīng)用 §3.1 群的完全可約表示 §3.2 群表示的分裂域 §3.3 對稱群的不可約表示第四章 特征標理論 §4.1 特征標的基本概念 §4.2 特征標的正交關(guān)系 §4.3 特征標表的應(yīng)用 §4.4 特征標值的整性 §4.5 分裂域上的特征標理論第五章 誘導(dǎo)表示的基本性質(zhì) §5.1 誘導(dǎo)表示的幾種刻畫 §5.2 誘導(dǎo)表示的基本性質(zhì) §5.3 誘導(dǎo)表示不可約性的判則 §5.4 Frobenius群 §5.5 置換表示與Burnside環(huán)第六章 誘導(dǎo)表示的分解 §6.1 由正規(guī)子群誘導(dǎo)的表示的分解 §6.2 一般誘導(dǎo)表示的分解(Hecke代數(shù))第七章 誘導(dǎo)特征標的Artin定理與Brauer定理 §7.1 誘導(dǎo)特征標的Artin定理 §7.2 誘導(dǎo)特征標的Braluer定理 §7.3 Brauer定理的一個逆定理第八章 Schur指標第九章 p模系統(tǒng)(K,R,k)與Grothendieck環(huán) §9.1 p模系統(tǒng)(K,R,k)與Grothendieck環(huán) §9.2 對偶,純量擴充,限制和誘導(dǎo) §9.3 cde三角形 §9.4 同態(tài)d、e、c的性質(zhì) §9.5 同態(tài)e的像第十章 Brauer特征標、塊及其虧群 §10.1 Brauer特征標 §10.2 塊的理論 §10.3 p塊及其p虧群第十一章 Brauer關(guān)于誘導(dǎo)塊的三個主要定理 §11.1 第一主要定理 §11.2 第二主要定理 §11.3 第三主要定理第十二章 頂點和源頭 §12.1 群環(huán)上的相對射影模和相對內(nèi)射模 §12.2 頂點和源頭 §12.3 下探與上溯,Green不可分解定理 §12.4 Green對應(yīng)參考文獻漢英對照術(shù)語索引符號
圖書封面
圖書標簽Tags
無
評論、評分、閱讀與下載