實(shí)數(shù)學(xué)分析(影印版)

出版時(shí)間:2009-2  出版社:高等教育出版社  作者:Charles Chapman Pugh  
Tag標(biāo)簽:無(wú)  

內(nèi)容概要

本書(shū)是作者Pugh在伯克利大學(xué)講授數(shù)學(xué)分析課程30多年之久的基礎(chǔ)上編寫(xiě)而成,書(shū)中語(yǔ)言表述生動(dòng)活潑、通俗易懂,引用了很多有價(jià)值的例子以及來(lái)自Dieudonne,Littlewood和Osserman等幾位數(shù)學(xué)家的評(píng)論,還精心挑選了500多個(gè)精彩的練習(xí)題。本書(shū)內(nèi)容包括實(shí)數(shù)、拓?fù)渲R(shí)初步、實(shí)變函數(shù)、函數(shù)空間、多元微積分、Lebesgue積分理論等,其中多元微積分的講法較為接近當(dāng)前數(shù)學(xué)界常用的語(yǔ)言,將會(huì)對(duì)我國(guó)數(shù)學(xué)分析的教學(xué)產(chǎn)生積極的影響。

書(shū)籍目錄

1  Real Numbers  1  Preliminaries  2  Cuts  3  Euclidean Space  4  Cardinality  5* Comparing Cardinalities  6* The Skeleton of Calculus  Exercises2  A Taste of Topology  1  Metric Space Concepts  2  Compactness  3  Connectedness  4  Coverings  5  Cantor Sets  6* Cantor Set Lore  7* Completion  Exercises3  Functions of a Real Variable  1  Differentiation  2  Riemann Integration  3  Series  Exercises4  Function Spaces  1  Uniform Convergence and C0[a, b]  2  Power Series  3  Compactness and Equicontinuity in CO  4  Uniform Approximation in Co  5  Contractions and ODE's  6* Analytic Functions  7* Nowhere Differentiable Continuous Functions   8* Spaces of Unbounded Functions  Exercises5  Multivariable Calculus  1  Linear Algebra  2  Derivatives  3  Higher derivatives  4  Smoothness Classes  5  Implicit and Inverse Functions  6* The Rank Theorem  7* Lagrange Multipliers  8  Multiple Integrals  9  Differential Forms  10  The General Stokes' Formula  11* The Brouwer Fixed Point Theorem  Appendix A: Perorations of Dieudonne  Appendix B: The History of Cavalieri's Principle  Appendix C: A Short Excursion into  the Complex Field  Appendix D: Polar Form  Appendix E: Determinants  Exercises6  Lebesgue Theory  1  Outer measure  2  Measurability  3  Regularity  4  Lebesgue integrals  5  Lebesgue integrals as limits  6  Italian Measure Theory  7  Vitali coverings and density points  8  Lebesgue's Fundamental Theorem of Calculus  9  Lebesgue's Last Theorem  Appendix A: Translations and Nonmeasurable sets  Appendix B: The Banach-Tarski Paradox  Appendix C: Riemann integrals as undergraphs  Appendix D: Littlewood's Three Principles  Appendix E: Roundness  Appendix F: Money  Suggested Reading  Bibliography  ExercisesIndex

圖書(shū)封面

圖書(shū)標(biāo)簽Tags

無(wú)

評(píng)論、評(píng)分、閱讀與下載


    實(shí)數(shù)學(xué)分析(影印版) PDF格式下載


用戶評(píng)論 (總計(jì)6條)

 
 

  •   評(píng)《實(shí)數(shù)學(xué)分析》在這部大學(xué)實(shí)分析的新引論中,作者採(cǎi)用了不同的寫(xiě)法,即強(qiáng)調(diào)圖片在數(shù)學(xué)和難題中的重要性.其闡述是非正規(guī)的和輕鬆的,有很多有用的旁白,例子,和數(shù)學(xué)家的偶然間的評(píng)論.本書(shū)強(qiáng)調(diào)定理的理解而非正規(guī)的證明.本書(shū)包含500多個(gè)認(rèn)真製作的練習(xí),從簡(jiǎn)單的練習(xí)到挑戰(zhàn)性的練習(xí)都有(因此本教材可用作實(shí)分析的例題和練習(xí)的資料書(shū)).
  •   全英語(yǔ)的,看起來(lái)有點(diǎn)吃力,在努力中,感覺(jué)很可以的
  •     此書(shū)內(nèi)容上雖然跟國(guó)內(nèi)實(shí)變函數(shù)教材有交集,但作者序言中說(shuō)明此書(shū)的預(yù)期讀者是“budding pure mathematician"(我譯成”含苞待放的純數(shù)學(xué)家“),而且暗示先導(dǎo)課是普通的微積分,證明此書(shū)就是美國(guó)的”高等微積分“教材,應(yīng)該譯為”真正的數(shù)學(xué)分析“或者”數(shù)學(xué)分析當(dāng)如此“l(fā)ol..
  •   數(shù)學(xué)分析當(dāng)如此---
  •   對(duì)這評(píng)論實(shí)在沒(méi)法吐槽
  •   樓主還是不要看這書(shū)了……
 

250萬(wàn)本中文圖書(shū)簡(jiǎn)介、評(píng)論、評(píng)分,PDF格式免費(fèi)下載。 第一圖書(shū)網(wǎng) 手機(jī)版

京ICP備13047387號(hào)-7