出版時(shí)間:2003-5 出版社:高等教育出版社 作者:陳祖樨 頁(yè)數(shù):261
Tag標(biāo)簽:無(wú)
內(nèi)容概要
《普通高等教育"十一五"國(guó)家級(jí)規(guī)劃教材·偏微分方程》對(duì)偏微分方程的古典理論作了嚴(yán)謹(jǐn)?shù)慕榻B和論證,在內(nèi)容、概念與方法等方面注重與現(xiàn)代偏微分方程知識(shí)之間的內(nèi)在聯(lián)系,對(duì)現(xiàn)代偏微分方程知識(shí)作了基本的闡述,注意各個(gè)數(shù)學(xué)分支知識(shí)在偏微分方程中的應(yīng)用?!镀胀ǜ叩冉逃?quot;十一五"國(guó)家級(jí)規(guī)劃教材·偏微分方程》內(nèi)容豐富,方法多樣,技巧性強(qiáng),并配有大量的例題和習(xí)題,難易兼顧,層次分明。
作者簡(jiǎn)介
陳祖墀,男,1965年山東大學(xué)畢業(yè)后分配到中國(guó)科學(xué)技術(shù)大學(xué)由華羅庚教授正在創(chuàng)建的統(tǒng)籌方法研究室,師從華羅庚教授學(xué)習(xí)并研究應(yīng)用數(shù)學(xué)。1973-1974受學(xué)校指派曾參與華北油田的勘測(cè)和開(kāi)發(fā),與北京大學(xué)數(shù)學(xué)系一起從事建立地層模型和數(shù)值模擬的研究工作。該工作結(jié)束后被授予國(guó)家科技進(jìn)步集體一等獎(jiǎng)。 1980年開(kāi)始專(zhuān)門(mén)從事偏微分方程的研究工作。1983年至1985年由美國(guó)加州大學(xué)柏克利(University of California at Berkeley)分校數(shù)學(xué)系的陳省身教授(Professor S.S.Chern)推薦到該校數(shù)學(xué)系,作為訪問(wèn)學(xué)者從事非線性偏微分方程的進(jìn)修與研究工作?! ?987年起至今被美國(guó)數(shù)學(xué)會(huì)聘為“美國(guó)數(shù)學(xué)評(píng)論”評(píng)論員并吸收為美國(guó)數(shù)學(xué)會(huì)會(huì)員,數(shù)次被美國(guó)和英國(guó)教育科研信息機(jī)構(gòu)編入“世界人名錄”和“劍橋人名錄”。 1985年底回國(guó),1986年晉升為副教授,1992年提升為教授,同年享受由國(guó)務(wù)院頒發(fā)的專(zhuān)家特殊政府津貼待遇。1995年遴選為博士生導(dǎo)師。作為訪問(wèn)學(xué)者,于1995年9月至1996年1月應(yīng)邀訪問(wèn)美國(guó)加州大學(xué)伯克利(Berkeley)分校數(shù)學(xué)系和普度(Purdue)大學(xué)數(shù)學(xué)系,從事非線性方程的研究工作?! 拇髮W(xué)畢業(yè)至今,一直在中國(guó)科大數(shù)學(xué)系從事教學(xué)、科研和培養(yǎng)研究生的工作。承擔(dān)國(guó)家自然科學(xué)基金項(xiàng)目和中國(guó)科學(xué)院科研項(xiàng)目及教育部博士點(diǎn)基金項(xiàng)目至今,培養(yǎng)數(shù)學(xué)研究生20余名。曾獲“中國(guó)科學(xué)院研究生優(yōu)秀導(dǎo)師獎(jiǎng)”,“安徽省優(yōu)秀教師獎(jiǎng)”等多項(xiàng)獎(jiǎng)勵(lì)。
書(shū)籍目錄
第1章緒論 1.1基本概念 1.1.1定義與例子 1.1.2疊加原理 1.2定解問(wèn)題 1.2.1定解條件與定解問(wèn)題 1.2.2定解問(wèn)題的適定性 1.3二階半線性方程的分類(lèi)與標(biāo)準(zhǔn)型 1.3.1多個(gè)自變量的方程 1.3.2個(gè)自變量的方程 1.3.3方程化為標(biāo)準(zhǔn)型 習(xí)題1 第2章一階擬線性方程 2.1一般理論 2.1.1特征曲線與積分曲面 2.1.2初值問(wèn)題 2.1.3例題 2.2傳輸方程 2.2.1齊次方程的初值問(wèn)題行波解 2.2.2非齊次傳輸方程 習(xí)題2 第3章波動(dòng)方程 3.1一維波動(dòng)方程的初值問(wèn)題 3.1.1d'Alembert公式反射法 3.1.2依賴(lài)區(qū)域決定區(qū)域影響區(qū)域 3.1.3初值問(wèn)題的弱解 3.2一維波動(dòng)方程的初邊值問(wèn)題 3.2.1齊次方程特征線法 3.2.2齊次方程分離變量法 3.2.3非齊次方程特征函數(shù)展開(kāi)法 3.3StarmLiOUVille特征值問(wèn)題 3.3.1特征函數(shù)的性質(zhì) 3.3.2特征值與特征函數(shù)的存在性 3.3.3特征函數(shù)系的完備性 3.4高維波動(dòng)方程的初值問(wèn)題 3.4.1球面平均法Kirchhoff公式 3.4.2降維法:Poisson公式 3.4.3非方程Duhamel原理 3.4.4Huygens原理波的彌散 3.5能量法解的唯一性與穩(wěn)定性 3.5.1能量等式初邊值問(wèn)題解的唯_性 3.5.2能量不等式初邊值問(wèn)題解的穩(wěn)定性 3.5.3初值問(wèn)題解的唯一性 習(xí)題3 第4章熱傳導(dǎo)方程 4.1初值問(wèn)題 4.1.1Fourier變換及其性質(zhì) 4.1.2解初值問(wèn)題 4.1.3解的存在性 4.2最大值原理及其應(yīng)用 4.2.1最大值原理 4.2.2初邊值問(wèn)題解的唯一性與穩(wěn)定性 4.2.3初值問(wèn)題解的唯一性與穩(wěn)定性 4.2.4例題 4.3強(qiáng)最大值原理 習(xí)題4 第5章位勢(shì)方程 5.1基本解 5.1.1基本解Green公式 5.1.2平均值等式 5.1.3最大最小值原理及其應(yīng)用 5.2Green函數(shù) 5.2.1Green函數(shù)的導(dǎo)出及其性質(zhì) 5.2.2球上的Green函數(shù)Poisson積分公式 5.2.3上半空間上的Green函數(shù) 5.2.4球上Dirichlet問(wèn)題解的存在性 5.2.5能量法 5.3調(diào)和函數(shù)的基本性質(zhì) 5.3.1逆平均值性質(zhì) 5.3.2Harnack不等式 5.3.3Liouville定理 5.3.4奇點(diǎn)可去性定理 5.3.5正則性 5.3.6微商的局部估計(jì) 5.3.7解析性 5.3.8例題 5.4Hopf最大值原理及其應(yīng)用 5.4.1Hopf最大值原理 5.4.2應(yīng)用 5.5位勢(shì)方程的弱解 5.5.1伴隨微分算子與伴隨邊值問(wèn)題 5.5.2弱微商及其簡(jiǎn)單性質(zhì) 5.5.3Sobolev空間H1(Ω)與H(Ω) 5.5.4弱解的存在唯一性 習(xí)題5 第6章變分法與邊值問(wèn)題 6.1邊值問(wèn)題與算子方程 6.1.1薄膜的橫振動(dòng)與最小位能原理 6.1.2正算子與算子方程 6.1.3正定算子弱解存在性 6.2Laplace算子的特征值問(wèn)題 6.2.1特征值與特征函數(shù)的存在性 6.2.2特征值與特征函數(shù)的性質(zhì) 習(xí)題6 第7章特征理論偏微分方程組 7.1方程的特征理論 7.1.1弱間斷解與弱間斷面 7.1.2特征方程與特征曲面 7.2方程組的特征理論 7.2.1弱間斷解與特征線 7.2.2狹義雙曲型方程組的標(biāo)準(zhǔn)型 7.3雙曲型方程組的Cauchy問(wèn)題 7.3.1解的存在性與唯一性 7.3.2解的穩(wěn)定性 7.4Cauchy—Kovalevskaja定理 7.4.1Cauchy—Kovalevskaja型方程組 7.4.2Cauchy問(wèn)題的化簡(jiǎn) 7.4.3強(qiáng)函數(shù) 7.4.4Cauchy—Kovalevskaja定理的證明 習(xí)題7 第8章廣義函數(shù)與基本解 8.1基本空間 8.1.1引言 8.1.2基本空間D(RN)和E(RN) 8.1.3基本空間I(RN)及其上的Fourier變換 8.2廣義函數(shù)空間 8.2.1概念與例子 8.2.2廣義函數(shù)的收斂性 8.2.3自變量的交換 8.2.4廣義函數(shù)的微商與乘子 8.2.5廣義函數(shù)的支集 8.2.6廣義函數(shù)的卷積 8.2.7空間上的Fourier變換 8.3基本解 8.3.1基本解的概念 8.3.2熱傳導(dǎo)方程及其Cauchy問(wèn)題的基本解 8.3.3波動(dòng)方程Cauchy問(wèn)題的基本解 8.3.4調(diào)和、重調(diào)和及多調(diào)和算子的基本解 習(xí)題8 索引
章節(jié)摘錄
版權(quán)頁(yè): 插圖:
編輯推薦
《普通高等教育"十一五"國(guó)家級(jí)規(guī)劃教材:偏微分方程(第3版)》可作為綜合性大學(xué)和高等師范院校數(shù)學(xué)類(lèi)專(zhuān)業(yè)教材和教學(xué)參考書(shū),還可作為一般數(shù)學(xué)工作者、物理工作者和工程技術(shù)人員的參考書(shū)。
圖書(shū)封面
圖書(shū)標(biāo)簽Tags
無(wú)
評(píng)論、評(píng)分、閱讀與下載
250萬(wàn)本中文圖書(shū)簡(jiǎn)介、評(píng)論、評(píng)分,PDF格式免費(fèi)下載。 第一圖書(shū)網(wǎng) 手機(jī)版