計算機模擬方法在物理學(xué)中的應(yīng)用

出版時間:2006-09-01  出版社:高等教育出版社  作者:Harvey Gould  頁數(shù):796  
Tag標簽:無  

內(nèi)容概要

  《計算機模擬方法在物理學(xué)中的應(yīng)用》(第3版影印版)是在美國大學(xué)使用很廣泛的一本經(jīng)典的,講解如何使用計算機進行物理學(xué)數(shù)字模擬的教材,該書為剛剛出版的第三版。該書不是簡單的物理學(xué)研究中的數(shù)學(xué)方法的介紹,而更注重在使用計算機模擬物理學(xué)問題中幫助學(xué)生更深刻的理解物理學(xué),幫助學(xué)生在學(xué)習(xí)中了解和掌握使用計算機做物理學(xué)研究的一些基本手段,并學(xué)會如何根據(jù)具體的物理問題選擇相應(yīng)的研究方法。此外,還通過對具體的例子的講解也為學(xué)習(xí)物理學(xué)的學(xué)生介紹了物理學(xué)廣闊的應(yīng)用天地。

作者簡介

作者:(美)古德

書籍目錄

~~~ Introduction       1.1   Importance of Computers in Physics       1.2   The Importance of Computer Simulation       1.3   Programming Languages       1.4   Object-Oriented Techniques       1.5   How to Use this Book              Appendix 1A: Laboratory Reports2 ~~ Tools for Doing Simulations      2. l   Introduction      2.2   Simulating Free Fall      2.3   Getting Started with Object-Oriented Programming      2.4   Inheritance      2.5   The Open Source Physics Library      2.6   Animation and Simulation      2.7   Model-View-Controller              Appendix 2A: Complex Numbers3 ~~ Simulating Particle Motion      3.1   Modified Euler Algorithms      3.2   Interfaces      3.3   Drawing      3.4   Specifying the State of a System Using Arrays      3.5   The ODE Interface      3.6   The ODESolver Interface      3.7   Effects of Drag Resistance      3.8   Two-Dimensional Trajectories      3.9   Decay Processes     *3.10  Visualizing Three-Dimensional Motion      3.11  Levels of Simulation              Appendix 3A: Numerical Integration of Newton's Equation of Motion4 ~~ Oscillatory Systems      4.1   Simple Harmonic Motion      4.2   The Motion of a Pendulum      4.3   Damped Harmonic Oscillator      4.4   Response to External Forces      4.5   Electrical Circuit Oscillations      4.6   Accuracy and Stability      4.7   Projects5 ~~ Few-Body Problems: The Motion of the Planets      5. l   Planetary Motion      5.2   The Equations of Motion      5.3   Circular and Elliptical Orbits      5.4   Astronomical Units      5.5   Log-Log and Semilog Plots      5.6   Simulation of the Orbit      5.7   Impulsive Forces      5.8   Velocity Space      5.9   AMini-Solar System      5.10  Two-Body Scattering      5.11  Three-Body Problems      5.12  Projects6 ~~ The Chaotic Motion of Dynamical Systems      6.1   Introduction      6.2   ASimple One-Dimensional Map      6.3   Period Doubling      6.4   Universal Properties and Self-Similarity      6.5   Measuring Chaos     *6.6   Controlling Chaos      6.7   Higher-Dimensional Models      6.8   Forced Damped Pendulum     *6.9   Hamiltonian Chaos      6.10  Perspective      6.11  Projects              Appendix 6A: Stability of the Fixed Points of the Logistic Map              Appendix 6B: Finding the Roots of a Function7 ~~ Random Processes      7.1   Order to Disorder      7.2   Random Walks      7.3   Modified Random Walks      7.4   The Poisson Distribution and Nuclear Decay      7.5   Problems in Probability      7.6   Method of Least Squares      7.7   Applications to Polymers      7.8   Diffusion-Controlled Chemical Reactions      7.9   Random Number Sequences      7.10  Variational Methods      7.11  Projects              Appendix 7A: Random Walks and the Diffusion Equation8 ~~ The Dynamics of Many-Particle Systems      8.1   Introduction      8.2   The Interrnolecular Potential      8.3   Units      8.4   The Numerical Algorithm      8.5   Periodic Boundary Conditions       8.6   A Molecular Dynamics Program       8.7   Thermodynamic Quantities       8.8   Radial Distribution Function       8.9   Hard Disks       8.10  Dynamical Properties       8.11  Extensions       8.12  Projects              Appendix 8A: Reading and Saving Configurations9 ~~ Normal Modes and Waves       9.1   Coupled Oscillators and Normal Modes       9.2   Numerical Solutions       9.3   Fourier Series       9.4   Two-Dimensional Fourier Series       9.5   Fourier Integrals       9.6   Power Spectrum       9.7   Wave Motion       9.8   Interference       9.9   Fraunhofer Diffraction       9.10  Fresnel Diffraction              Appendix 9A: Complex Fourier Series              Appendix 9B: Fast Fourier Transform              Appendix 9C: Plotting Scalar Fields10 ~~ Electrodynamics         10.1  Static Charges         10.2  Electric Fields         10.3  Electric Field Lines         10.4  Electric Potential         10.5  Numerical Solutions of Boundary Value Problems         10.6  Random Walk Solution of Laplace's Equation       "10.7  Fields Due to Moving Charges       "10.8  Maxwell's Equations         10.9  Projects  407                Appendix 10A: Plotting Vector Fields11 ~~ Numerical and Monte Carlo Methods         11.1  Numerical Integration Methods in One Dimension         11.2  Simple Monte Carlo Evaluation of Integrals        11.3  Multidimensional Integrals        11.4  Monte Carlo Error Analysis        11.5  Nonuniform Probability Distributions         11.6  Importance Sampling        11.7  Metropolis Algorithm       * 11.8  Neutron Transport                Appendix 11A: Error Estimates for Numerical Integration                Appendix 11B: The Standard Deviation of the Mean                Appendix 11C: The Acceptance-Rejection Method                Appendix llD: Polynomials and Interpolation12 ~~ Percolation        12.1  Introduction        12.2  The Percolation Threshold        12.3  Finding Clusters        12.4  Critical Exponents and Finite Size Scaling        12.5  The Renormalization Group        12.6  Projects13 ~~ Fractals and Kinetic Growth Models        13.1  The Fractal Dimension        13.2  Regular Fractals        13.3  Kinetic Growth Processes        13.4  Fractals and Chaos        13.5  Many Dimensions        13.6  Projects 14 ~~ Complex Systems         14.1  Cellular Automata         14.2  Self-Organized Critical Phenomena         14.3  The Hopfield Model and Neural Networks         14.4  Growing Networks         14.5  Genetic Algorithms         14.6  Lattice Gas Models of Fluid Flow         14.7  Overview and Projects15 ~~ Monte Carlo Simulations of Thermal Systems         15.1  Introduction         15.2  The Microcanonical Ensemble         15.3  The Demon Algorithm         15.4  The Demon as a Thermometer         15.5  The Ising Model         15.6  The Metropolis Algorithm         15.7  Simulation of the Ising Model         15.8  The Ising Phase Transition         15.9  Other Applications of the Ising Model         15.10 Simulation of Classical Fluids         15.11 Optimized Monte Carlo Data Analysis       * 15.12 Other Ensembles         15.13 More Applications         15.14 Projects                Appendix 15A: Relation of the Mean Demon Energy to the Temperature                Appendix 15B: Fluctuations in the Canonical Ensemble                Appendix 15C: Exact Enumeration of the 2 x 2 Ising Model16 ~~ Quantum Systems        16.1  Introduction        16.2  Review of Quantum Theory        16.3  Bound State Solutions        16.4  Time Development of Eigenstate Superpositions        16.5  The Time-Dependent Schrrdinger Equation        16.6  Fourier Transformations and Momentum Space        16.7  Variational Methods        16.8  Random Walk Solutions of the Schrrdinger Equation        16.9  Diffusion Quantum Monte Carlo        16.10 Path Integral Quantum Monte Carlo        16.11 Projects               Appendix 16A: Visualizing Complex Functions17 ~~ Visualization and Rigid Body Dynamics        17.1  Two-Dimensional Transformations        17.2  Three-Dimensional Transformations        17.3  The Three-Dimensional Open Source Physics Library        17.4  Dynamics of a Rigid Body         17.5  Quaternion Arithmetic         17.6  Quaternion Equations of Motion         17.7  Rigid Body Model         17.8  Motion of a Spinning Top         17.9  Projects                Appendix 17A: Matrix Transformations                Appendix 17B: Conversions18 ~~ Seeing in Special and General Relativity         t8.1  Special Relativity         18.2  General Relativity         18.3  Dynamics in Polar Coordinates         18.4  Black Holes and Schwarzschild Coordinates         18.5  Particle and Light Trajectories         18.6  Seeing         18.7  General Relativistic Dynamics       * 18.8  The Kerr Metric         18.9  Projects19 ~~ Epilogue: The Unity of Physics         19.1  The Unity of Physics         19.2  Spiral Galaxies         19.3  Numbers, Pretty Pictures, and Insight         19.4  Constrained Dynamics         19.5  What are Computers Doing to Physics?       Index~

編輯推薦

《計算機模擬方法在物理學(xué)中的應(yīng)用》(第3版影印版)可作為高等學(xué)校物理類專業(yè)或其它理工類專業(yè)計算物理課程的教材或參考書,對于相關(guān)學(xué)科的研究人員也是一本有用的參考書。

圖書封面

圖書標簽Tags

評論、評分、閱讀與下載


    計算機模擬方法在物理學(xué)中的應(yīng)用 PDF格式下載


用戶評論 (總計7條)

 
 

  •   很好的計算物理書,就是起點太高,畢竟java學(xué)過的人不是太多,尤其是學(xué)物理的。
  •   亞馬遜的發(fā)貨非常及時,此書也正是我所需要的,服務(wù)非常令人滿意!
  •   拿著手里都覺得重啊,而且是全英文的,哈哈
  •   高教這批書性價比很高。本書拿到手,感覺超值。
  •   很不錯的書,我非常喜歡,物理算法的部分通俗易懂。即使不懂JAVA語言,可以忽略掉編程部分,只看算法和物理的部分,也是非常有收獲的。對于具體用什么語言編程不是重點,領(lǐng)悟到其中的解決物理問題的編程思想才是最重要的。
  •   非常喜歡此書,對我很有幫助,推薦給學(xué)物理的同學(xué)。
  •   作為影印版,質(zhì)量很不錯了。
 

250萬本中文圖書簡介、評論、評分,PDF格式免費下載。 第一圖書網(wǎng) 手機版

京ICP備13047387號-7