納米科學(xué)與技術(shù)大全2

出版時間:2012-7  出版社:戴維 L.安德魯斯(David Andrews)、 等 科學(xué)出版社 (2012-07出版)  作者:戴維 L.安德魯斯  頁數(shù):359  

內(nèi)容概要

  近年,納米技術(shù)及其基礎(chǔ)科學(xué)以前所未有的速度增長與發(fā)展?;诖?,安德魯斯等編寫的《納米科學(xué)與技術(shù)大全》旨在為讀者們呈現(xiàn)一本動態(tài)的、權(quán)威的和真正能獲取有效信息的參考著作,力求反映此學(xué)科領(lǐng)域全面而廣闊的發(fā)展?fàn)顩r。此書共有5卷。由國際專家組寫作而成,內(nèi)容涉及材料科學(xué)、物理學(xué)、生命科學(xué)、化學(xué)等領(lǐng)域;每篇文章的寫作都兼具學(xué)術(shù)性、批判性與可讀性,內(nèi)容深入淺出,前后呼應(yīng),是一本跨學(xué)科領(lǐng)域研究者們不可或缺的有價值的參考資料。本書為《納米科學(xué)與技術(shù)大全2:生物納米科學(xué)(導(dǎo)讀版)》,適合化學(xué)、物理學(xué)、材料科學(xué)、生物學(xué)、工程學(xué)等領(lǐng)域的研究生及科研人員參考,對于納米研究實(shí)驗室、學(xué)術(shù)機(jī)構(gòu),涉及納米和生物材料、材料科學(xué)等方面的專業(yè)組織、公司、企業(yè)等也是不可多得的參考資料。

作者簡介

作者:(英國)David L.Andrews (英國)Gregory D.Scholes (英國)Gary P.Wiederrecht 譯者:吳曉春 陳春英 郭延軍David Andrews是東英吉利亞大學(xué)化學(xué)物理教授,他領(lǐng)導(dǎo)的理論小組在基礎(chǔ)光子學(xué)、熒光、能量輸運(yùn)、非線性光學(xué)和光機(jī)械力方面進(jìn)行了廣泛的研究。他發(fā)表了250篇研究論文和10本以他的名字出版的其他書籍,他經(jīng)常應(yīng)邀在國際會議上做報告。在北美和歐洲,他先后組織并主持了許多有關(guān)納米科學(xué)和技術(shù)的國際會議。Andrews教授是英國皇家化學(xué)學(xué)會(RSC)、物理研究所以及光學(xué)和光子學(xué)國際工程學(xué)會(SPIE)的成員。在業(yè)余時間,他很享受與家人朋友一起相處,他也是一個熱衷于英國風(fēng)景的畫家。他的其他興趣主要有音樂、繪畫藝術(shù)和寫作。Greg Scholes是多倫多大學(xué)化學(xué)系教授。他目前的研究集中在利用合成、理論和超快激光光譜學(xué)闡明決定納米體系電子結(jié)構(gòu)、光學(xué)性質(zhì)和光物理性質(zhì)的內(nèi)在機(jī)制?;谒耐怀鲐暙I(xiàn),2009年入選加拿大皇家學(xué)會科學(xué)院,2007年榮獲加拿大皇家學(xué)會化學(xué)盧瑟福(Rutherford)獎?wù)拢?007年獲得國家自然科學(xué)基金(NSERC)Steacie基金,2006年獲得加拿大化學(xué)學(xué)會Keith Laidler基金以及Alfred P暢Sloan基金(2005~2006年)。Scholes博士現(xiàn)任物理化學(xué)雜志的資深主編和納米光子學(xué)雜志副主編。他喜歡籃球、遠(yuǎn)足、攝影,喜歡和家人朋友相處。Gary Wiederrecht是阿貢國家實(shí)驗室納米材料中心的納米光子學(xué)小組組長。他的研究興趣集中在納米粒子及其周期性組裝體的光化學(xué)和光物理、雜化納米結(jié)構(gòu)、光化學(xué)能量轉(zhuǎn)換以及光致電荷分離引起的非線性光學(xué)響應(yīng)。在實(shí)驗技術(shù)上,他擅長超快光譜和掃描探針顯微技術(shù),包括近場光學(xué)顯微技術(shù)。他獲得了能源部青年科學(xué)家R&D100獎和青年科學(xué)家和工程師總統(tǒng)獎。他撰寫或合作撰寫了約80篇同行評審的研究論文,并與世界多國的科學(xué)家都有合作研究。他喜歡旅游、自然,喜歡與家人相處。

書籍目錄

2.01 納米顆粒用于光動力學(xué)治療2.01.1 Introduction2.01.1.1 Photodynamic Therapy2.01.1.2 History of PDT2.01.1.3 Mechanisms of Photodetection and Photodynamic Action2.01.1.4 PDT Effect In Vitro2.01.1.5 PDT Effect on Tumor Ablation2.01.1.6 Molecular Photosensitizers for PDT2.01.1.7 Challenges in PDT2.01.1.8 NP Delivery Platforms Developed for PDT2.01.1.9 Photodetection and Diagnosis of Diseases2.01.2 Targeting NPs for PDT2.01.2.1 Passive Targeting:EPR Effect2.01.2.2 Active Targeting2.01.3 NPs for PDT Treatment2.01.3.1 Polymer-Based NPs2.01.3.1.1 Polymeric NPs2.01.3.1.2 Polymer-photosensitizer conjugates2.01.3.2 Polymeric Micelles2.01.3.3 Liposomes2.01.3.4 Dendrimers2.01.3.5 Ceramic NPs2.01.3.6 Gold NPs2.01.3.7 Quantum Dots2.01.3.8 Magnetic NPs2.01.3.9 Other Types of NPs in Use for PDT2.01.4 Pharmacokinetics and the Issue of NP Safety in PDT2.01.5 Light Sources for PDT2.01.6 SummaryReferences2.02 光合成捕光復(fù)合物中的能量轉(zhuǎn)移:從光譜學(xué)到定量研究模型2.02.1 Introduction2.02.2 Structure and Exciton Spectra of LH1/LH2 Bacterial Antenna2.02.3 Equilibration Dynamics in LH1 and B850-LH22.02.3.1 Exciton Relaxation Dynamics2.02.3.2 Interplay of Excitonic and Vibrational Coherences2.02.4 Variety of Excitation Dynamics in B850-LH2 Revealed by Single-Molecule Spectra2.02.4.1 Conformational Disorder and Spectral Fluctuations2.02.4.2 Conformational Disorder and Excitation Dynamics2.02.4.3 Multistate Model for Conformational Switching2.02.5 Competition of Intraband B800-B800 and Interband B800-B850 Energy Transfer in LH22.02.5.1 Excitation-Wavelength-Dependent Decay of B800 Band2.02.5.2 B800-B800 and B800-B850 Transfers:Modeling of Polarized TA2.02.5.3 B800-B800 and B800-B820(850) Transfers:2D PE Studies2.02.6 How Energy Flows in the Major Light-Harvesting Complex II of Higher Plants:Connecting Spectroscopy with the 2.72? Crystal Structure2.02.6.1 The Origin of the Steady-State and TA Spectra2.02.6.2 Energy Transfer within Monomeric Subunit2.02.6.3 Intra-and Intermonomeric Transfers:Comparing the Redfield and the F? rster Approaches2.02.6.4 Energy Equilibration between Monomeric Subunits2.02.6.5 Comparing the Exciton Model and Single-Molecule Spectra2.02.6.6 Nonphotochemical Quenching of Excitations2.02.7 Summary and OutlookReferences2.03 光子納米顆粒用于細(xì)胞和組織標(biāo)記2.03.1 Introduction2.03.2 Background2.03.2.1 Surface Functionalization2.03.2.2 Enhanced Optical Properties2.03.3 Fluorescent Semiconductor QDs2.03.3.1 Background2.03.3.2 Surface Functionalization2.03.3.3 In Vitro Assays2.03.3.4 In Vivo Assays2.03.3.5 Toxicity2.03.3.5.1 In vitro toxicity2.03.3.5.2 In vivo toxicity2.03.4 Plasmonic Noble Metal NPs2.03.4.1 Introduction2.03.4.2 Surface Plasmons2.03.4.3 Tuning Metal NP Surface Plasmon Properties2.03.4.4 Surface-Enhanced Raman Spectroscopy2.03.4.4.1 Potential advantages of SERS as an imaging modality2.03.4.5 Surface Modification and Functionalization2.03.4.6 In Vitro Studies2.03.4.6.1 Dark-field microscopy2.03.4.6.2 Sers2.03.4.7 In Vivo Studies2.03.4.7.1 Optical coherence tomography2.03.4.7.2 In vivo SERS2.03.4.7.3 Photoacoustic imaging2.03.4.8 Toxicity2.03.4.8.1 In vitro study2.03.4.8.2 In vivo study2.03.5 Conclusions and Future PerspectivesReferences2.04 DNA偶聯(lián)的納米顆粒在生物分析中的應(yīng)用2.04.1 Introduction2.04.2 Nanomaterials2.04.3 Nucleic Acid Probes2.04.4 Silica NPs2.04.4.1 Synthesis of Fluorescent Silica NPs2.04.4.2 Surface Functionalization of Silica NPs2.04.4.3 DNA-Conjugated Silica NPs for Bioanalysis Applications2.04.4.3.1 Dye-doped silica NPs for nucleic acid analysis2.04.4.3.2 Dye-doped silica NPs for DNA microarray detection2.04.4.3.3 Silica NP-aptamer conjugates for signal amplification in cancer cell detection2.04.5 Magnetic Nanoparticles2.04.5.1 Preparation of MNPs2.04.5.2 DNA Surface Functionalization of MNPs2.04.5.3 MNPs for Bioanalysis Applications2.04.5.3.1 Magnetic nanocapturers for trace amount mRNA collection2.04.5.3.2 Aptamer-conjugated MNPs and fluorescent silica NPs for selective collection and detection of cancer cells2.04.6 Gold NPs2.04.6.1 Preparation of Gold NPs2.04.6.2 Functionalization of Gold NPs with Thiol-Modifier DNA2.04.6.3 Bioapplications of Gold NPs2.04.6.3.1 Gold NP-based colorimetric assay for direct detection of cancerous cells2.04.6.3.2 DNA-conjugated nanodevice for reliable genotyping2.04.6.3.3 Gold-DNA nanoconjugates for gel electrophoresis2.04.6.3.4 Summary2.04.7 Nanorods2.04.7.1 Synthesis of Au NR Seeds2.04.7.2 Synthesis of Au-Ag NRs2.04.7.3 Gold NRs of Varying Aspect Ratios2.04.7.4 Functionalization of Au-Ag NRs2.04.7.5 Cancer Cell Targeting Using Multiple Aptamers Conjugated on NRs2.04.7.6 Selective Photothermal Therapy for Mixed Cancer Cells Using Aptamer-Conjugated NRs2.04.8 Carbon Nanotubes2.04.8.1 Carbon Nanotube-Quenched Fluorescent Oligonucleotide:Probes That Fluoresce upon Hybridization2.04.8.2 Regulation of Singlet-Oxygen Generation Using SWNTs2.04.8.3 Carbon Nanotubes Protect DNA Strands during Cellular Delivery2.04.9 Conclusion and Future PerspectiveReferences2.05 福斯特共振能量轉(zhuǎn)移2.05.1 Introduction2.05.2 Basic Concepts in Fluorescence and FRET2.05.2.1 Basic Concepts in Fluorescence2.05.2.2 F?rster Theory and Experimental Tests-An Overview2.05.2.3 Photophysical Determinants of FRET2.05.3 Selected FRET Applications and Variants2.05.3.1 FRET as a Tool for Studying Biological Folding2.05.3.2 Multidistance FRET for Structure Determination of Multicomponent Complexes2.05.3.3 FRET Applications in Synthetic Nanotechnology2.05.3.4 FRET and Variations(Two-Photon,Bioluminescence Resonance Energy Transfer)in Studies of Cells or Whole Organisms2.05.4 Single-Molecule FRET2.05.4.1 SmFRET Introduction2.05.4.2 Early smFRET Observations2.05.4.3 SmFRET to Probe Conformational Dynamics for Immobilized Molecules2.05.4.4 SmFRET of Diffusing Molecules-Subpopulations,Distance Distributions,and Conformational Dynamics2.05.4.5 Particle Tracking and smFRET in Cells2.05.4.6 Advanced Techniques2.05.4.6.1 Multiparameter fluorescence,advanced analysis,and multiplexed excitation2.05.4.6.2 Combination of smFRET with other techniques2.05.4.6.3 FRET and fluorescence nanoscopy2.05.4.7 Concluding RemarksReferences2.06 蛋白質(zhì)納米顆?;瘜W(xué)及材料研究2.06.1 Introduction2.06.2 Structure and Properties2.06.2.1 Virus2.06.2.1.1 Rod-like virus2.06.2.1.2 Spherical virus2.06.2.2 Ferritin2.06.2.3 Heat Shock Protein2.06.2.4 Enzyme Complexes and Other Protein Nanoparticles2.06.3 Modification2.06.3.1 Genetic Modification2.06.3.2 Chemical Modification2.06.4 Template Synthesis of Composite Materials2.06.5 Self-Assembly of Protein Nanoparticles2.06.5.1 Interfacial Self-Assembly2.06.5.2 TMV Head-to-Tail Assembly2.06.5.3 Layer-by-Layer Assembly2.06.5.4 Convective Alignment2.06.5.5 Other Assembly Techniques2.06.6 OutlookReferences2.07 組織工程2.07.1 Introduction2.07.2 Tissue Engineering2.07.2.1 Basic Principles2.07.2.2 Cells2.07.2.2.1 Autologous,allogeneic,and xenogeneic cells2.07.2.2.2 Tissue-specific and progenitor cells2.07.2.2.3 Stem cells2.07.2.2.4 Primary cells versus cell lines2.07.2.3 Scaffolds2.07.2.3.1 Physical properties2.07.2.3.2 Biological properties2.07.2.3.3 Fibrous scaffolds,porous scaffolds,and hydrogels2.07.2.3.4 Chemical composition of scaffolds:Natural and synthetic2.07.2.3.5 Scaffold fabrication2.07.2.4 Bioreactors2.07.2.4.1 Static bioreactor2.07.2.4.2 Rotary bioreactor2.07.2.4.3 Perfusion bioreactor2.07.2.4.4 Electrical-stimuli bioreactor2.07.2.4.5 Mechanical-stimuli bioreactor2.07.2.5 Examples of In Vitro Tissue Engineering2.07.2.5.1 Example 1:The standard tissue-engineering paradigm used for muscle tissue2.07.2.5.2 Example 2:The importance of functional tissue engineering for tendon tissue2.07.2.5.3 Example 3:Importance of growth factors and cell-free tissue engineering for bone tissue2.07.2.5.4 Example 4:Scaffold-free tissue engineering and ectopic implantation for hepatic tissue2.07.2.5.5 Example 5:In vitro substitutes for in vivo microenvironment for follicle tissue2.07.2.5.6 Example 6:Appreciating the complexity of the body in neural tissue2.07.3 Successful Clinical Applications of Tissue Engineering2.07.3.1 Trachea2.07.3.2 Bladder2.07.3.3 Cartilage2.07.3.4 Blood Vessel2.07.3.5 Heart Valve2.07.3.6 Skin2.07.4 Case Study:Cardiac-Tissue Engineering2.07.4.1 The Tissue-Engineering Paradigm:Cell,Scaffold,and Bioreactor Approach2.07.4.2 Hydrogel Encapsulation and Mechanical Stimulation2.07.4.3 Matrix-Free Approaches2.07.4.4 Repair of Infarcted Myocardium Using Engineered Cardiac Tissue2.07.4.5 Challenges and Future Studies2.07.5 SummaryReferences2.08 水凝膠生物仿生膜2.08.1 Overview2.08.2 Artificial Lipid Bilayer Membranes2.08.2.1 Phospholipids for Engineered Biomimetic Membranes2.08.2.2 Lipid Bilayer Formation by Painting(Mueller-Rudin Method)2.08.2.3 Monolayer Folding Method(Montal-Mueller Method)2.08.2.4 Shortcomings of Artificial Bilayer Technologies2.08.3 Engineering Biomimetic Membranes with Hydrogels2.08.3.1 Early Work with Hydrogels2.08.3.2 In Situ Hydrogel Encapsulation of Lipid Bilayers2.08.3.3 Hydrogel-Conjugated Membranes2.08.3.4 Other Biomimetic Membranes Using Hydrogels2.08.3.5 Applications Using Hydrogel-Supported Membranes2.08.4 OutlookReferences2.09 蛋白質(zhì)納米力學(xué)2.09.1 Introduction2.09.2 Mechanical Unfolding/Folding of Proteins2.09.3 Pioneering Work in Single-Molecule Force Spectroscopy on Proteins2.09.4 Polyprotein Engineering Techniques2.09.4.1 Necessity and Advantages of the Polyprotein Approach2.09.4.2 Methodologies for the Construction of Polyproteins2.09.4.3 Special Considerations2.09.5 Operation Modes of Single-Molecule Force Spectroscopy2.09.5.1 Constant Velocity Single-Molecule Force Spectroscopy2.09.5.2 Force-Clamp Single-Molecule AFM2.09.6 Folding Studies via Single-Molecule AFM2.09.7 Mechanical Stability of Proteins2.09.7.1 Mechanical Stability versus Thermodynamic Stability and Kinetic Stability2.09.7.2 Pulling Directions Affect the Mechanical Stability of Proteins:Mechanical Stability is an Anisotropic Property2.09.8 Toolbox of Elastomeric Proteins:From Naturally Occurring Elastomeric Proteins to Nonmechanical Protein-Based Artificial Elastomeric Proteins2.09.9 Case Studies2.09.9.1 Mechanical Protein I27:A Paradigm in Single-Protein Mechanics2.09.9.2 Nonmechanical Protein GB1:An Ideal Candidate for Constructing Artificial Elastomeric Proteins2.09.9.3 Mechanical Protein I27 and Nonmechanical Protein GB1:A Comparison2.09.10 Molecular Determinants of Mechanical Stability of Proteins2.09.10.1 Topology Plays Important Roles in Determining the Mechanical Stability of a Given Protein2.09.10.2 Mutations in the Key Regions of Proteins Can Alter the Mechanical Stability2.09.10.3 Ligand Binding Can Influence the Mechanical Stability of Proteins2.09.10.4 Environmental Factors Can Affect the Mechanical Stability of Proteins2.09.11 From Single Protein to Protein Complexes and Tissues:Bridging the Gap between Single-Protein Mechanics and Tissue Mechanics2.09.12 ConclusionReferences2.10 掃描近場光學(xué)顯微鏡在生物成像中的應(yīng)用2.10.1 Introduction2.10.2 Methodology2.10.3 Biological Imaging2.10.3.1 Fluorescence-Based NSOM(Apertured Approach)2.10.3.1.1 Lipids and lipid rafts2.10.3.1.2 Cell-surface receptors2.10.3.1.3 Amyloid fibrils2.10.3.2 Apertureless Near-Field Imaging2.10.3.2.1 Signal derivation2.10.3.2.2 Amyloid fibrils2.10.3.2.3 DNA2.10.3.2.4 Viruses2.10.3.2.5 Proteins at cell surface2.10.3.2.6 Neurons2.10.3.2.7 Cell-Biomaterial interface2.10.3.2.8 Photothermal NSOM2.10.4 Artifact-Free Near-Field Signal2.10.5 ConclusionsReferences2.11 單分子和納米技術(shù)在生物信號中的應(yīng)用2.11.1 Proteins and Cells from a Nanomaterials Perspective2.11.1.1 Proteins as Nanomaterials2.11.1.2 Robustness of Proteins against Mutation2.11.1.3 Cells as Nanostructured Materials2.11.1.4 Biological Signal Transduction2.11.2 Single-Molecule Studies of Conformational Dynamics and Protein-Protein Interactions in Signaling2.11.2.1 Introduction to Single-Molecule Force Spectroscopy2.11.2.2 Single-Molecule Force Spectroscopy of Photoactive Yellow Protein:Anisotropy and Functional Conformational Changes2.11.2.2.1 Introduction to PYP2.11.2.2.2 Force spectroscopy of conformational changes during PYP signaling2.11.2.2.3 Force spectroscopy of anisotropy in the structural stability of PYP2.11.2.3 Single-Molecule Force Spectroscopy of the Transmembrane Signaling Complex of Sensory Rhodopsin II2.11.2.3.1 Introduction to SR2.11.2.3.2 Force spectroscopy of a transmembrane signaling complex2.11.2.3.3 Conclusions and general implications for the use of single-molecule force spectroscopy in studying the structural and functional properties of proteins2.11.3 Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy Approaches of In Vivo Signaling2.11.3.1 Introduction to FRET and FCS2.11.3.2 Using FRET to Probe Protein-Protein Interactions in Chemotactic E. coli Cells2.11.3.2.1 Introduction to chemotaxis signaling in E. coli2.11.3.2.2 Probing in vivo chemotactic signaling in E. coli by FRET2.11.3.3 FCS Approaches to Biological Signaling2.11.3.3.1 Using FCS to measure the concentration of signaling proteins in a single cell2.11.3.3.2 Correlating signaling protein concentration and responses of a single cell2.11.3.3.3 Conclusions and general implications for signal transduction2.11.3.4 Consequences of Thermal Noise for Biological Signaling2.11.3.4.1 Robustness of cellular behavior against thermal noise2.11.3.4.2 Molecular noise as a key element in chemotactic signaling2.11.3.4.3 Exploiting thermal noise for biological signaling:Competence in Bacillus subtilis2.11.3.4.4 Conclusions and general implications on the role of noise in biological signaling2.11.4 Subcellular Nanoscale Protein Clusters in Biological Signaling2.11.4.1 The Cytoplasm and Cytoskeleton of Bacteria2.11.4.2 Nanoclusters for Signaling in Bacterial Chemotaxis2.11.4.2.1 Nanoscale protein clusters in E. coli chemotaxis2.11.4.2.2 Introduction to chemotaxis in Rb. sphaeroides2.11.4.2.3 Nanoscale complexes of signaling proteins in Rb. sphaeroides2.11.4.3 Conclusions and Implications of Nanoscale Protein Clusters for Biological SignalingReferences2.12 太陽能轉(zhuǎn)換:從自然到人工2.12.1 Nature's Way2.12.1.1 Construction of Light-Harvesting and Energy-Converting Pigment Systems of Photosynthesis2.12.1.2 Need for a Light-Harvesting Antenna2.12.1.3 Spectral Coverage2.12.1.4 Efficient Energy Flow through the Light-Harvesting Antenna Systems2.12.1.5 Intracomplex Energy Transfer2.12.1.6 Delocalized Excitons in Photosynthetic Light Harvesting2.12.1.7 Efficient Antenna-RC Coupling:Long-Distance Energy Transfer versus Short-Distance Charge Transfer2.12.1.8 Carotenoid Molecules in Photosynthesis-Their Spectroscopy2.12.1.9 Light Harvesting by Carotenoid Molecules2.12.1.10 Protection of the Photosynthetic Machinery-Quenching of Chlorophyll Excited States by Carotenoids2.12.1.11 Storing the Energy of Light-Photosynthetic Charge Separation2.12.2 The Artificial Way2.12.2.1 Nanostructured Materials for Solar Electricity2.12.2.2 Nanostructured Dye-Sensitized Metal Oxides of Gr?tzel Solar Cells2.12.2.3 Electron Injection from Sensitizer to Semiconductor in DSCs2.12.2.4 Charge Recombination and Transport in Dye-Sensitized Semiconductor Materials2.12.2.5 Dye-Semiconductor Binding from Recombination Dynamics in Dye-Sensitized Materials2.12.2.6 Recombination and DSC Performance2.12.2.7 Charge Transport in Dye-Sensitized Nanostructured Semiconductor Films2.12.2.8 Plastic Solar Cells Based on the BHJ Concept2.12.2.8.1 Charge generation and recombination2.12.2.8.2 Relation of BHJ photophysics to solar cell functionReferences

編輯推薦

《納米科學(xué)與技術(shù)大全2:生物納米科學(xué)(導(dǎo)讀版)》由科學(xué)出版社出版。

圖書封面

評論、評分、閱讀與下載


    納米科學(xué)與技術(shù)大全2 PDF格式下載


用戶評論 (總計0條)

 
 

 

250萬本中文圖書簡介、評論、評分,PDF格式免費(fèi)下載。 第一圖書網(wǎng) 手機(jī)版

京ICP備13047387號-7